Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difltmodne Structured version   Visualization version   GIF version

Theorem difltmodne 47346
Description: Two nonnegative integers are not equal modulo a positive modulus if their difference is greater than 0 and less than the modulus. (Contributed by AV, 6-Sep-2025.)
Assertion
Ref Expression
difltmodne ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝑁)) → (𝐴 mod 𝑁) ≠ (𝐵 mod 𝑁))

Proof of Theorem difltmodne
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝑁)) → 𝑁 ∈ ℕ)
2 zsubcl 12536 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
3 simpl 482 . . . . . . . . 9 ((1 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝑁) → 1 ≤ (𝐴𝐵))
42, 3anim12i 613 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝑁)) → ((𝐴𝐵) ∈ ℤ ∧ 1 ≤ (𝐴𝐵)))
543adant1 1130 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝑁)) → ((𝐴𝐵) ∈ ℤ ∧ 1 ≤ (𝐴𝐵)))
6 elnnz1 12520 . . . . . . 7 ((𝐴𝐵) ∈ ℕ ↔ ((𝐴𝐵) ∈ ℤ ∧ 1 ≤ (𝐴𝐵)))
75, 6sylibr 234 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝑁)) → (𝐴𝐵) ∈ ℕ)
8 simp3r 1203 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝑁)) → (𝐴𝐵) < 𝑁)
9 elfzo1 13634 . . . . . 6 ((𝐴𝐵) ∈ (1..^𝑁) ↔ ((𝐴𝐵) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝐵) < 𝑁))
107, 1, 8, 9syl3anbrc 1344 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝑁)) → (𝐴𝐵) ∈ (1..^𝑁))
11 nnz 12511 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
12113ad2ant1 1133 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝑁)) → 𝑁 ∈ ℤ)
13 fzoval 13582 . . . . . 6 (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1)))
1412, 13syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝑁)) → (1..^𝑁) = (1...(𝑁 − 1)))
1510, 14eleqtrd 2830 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝑁)) → (𝐴𝐵) ∈ (1...(𝑁 − 1)))
16 fzm1ndvds 16252 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴𝐵) ∈ (1...(𝑁 − 1))) → ¬ 𝑁 ∥ (𝐴𝐵))
171, 15, 16syl2anc 584 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝑁)) → ¬ 𝑁 ∥ (𝐴𝐵))
18 3simpa 1148 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝑁)) → (𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
19 3anass 1094 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
2018, 19sylibr 234 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝑁)) → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
21 moddvds 16193 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝐵)))
2220, 21syl 17 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝑁)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝐵)))
2317, 22mtbird 325 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝑁)) → ¬ (𝐴 mod 𝑁) = (𝐵 mod 𝑁))
2423neqned 2932 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝑁)) → (𝐴 mod 𝑁) ≠ (𝐵 mod 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  (class class class)co 7353  1c1 11029   < clt 11168  cle 11169  cmin 11366  cn 12147  cz 12490  ...cfz 13429  ..^cfzo 13576   mod cmo 13792  cdvds 16182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-fz 13430  df-fzo 13577  df-fl 13715  df-mod 13793  df-dvds 16183
This theorem is referenced by:  zplusmodne  47347  m1modne  47352  minusmod5ne  47353  submodneaddmod  47355
  Copyright terms: Public domain W3C validator