![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > difltmodne | Structured version Visualization version GIF version |
Description: Two nonnegative integers are not equal modulo a positive modulus if their difference is greater than 0 and less then the modulus. (Contributed by AV, 6-Sep-2025.) |
Ref | Expression |
---|---|
difltmodne | ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 mod 𝑁) ≠ (𝐵 mod 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → 𝑁 ∈ ℕ) | |
2 | zsubcl 12691 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℤ) | |
3 | simpl 482 | . . . . . . . . 9 ⊢ ((1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁) → 1 ≤ (𝐴 − 𝐵)) | |
4 | 2, 3 | anim12i 612 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → ((𝐴 − 𝐵) ∈ ℤ ∧ 1 ≤ (𝐴 − 𝐵))) |
5 | 4 | 3adant1 1130 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → ((𝐴 − 𝐵) ∈ ℤ ∧ 1 ≤ (𝐴 − 𝐵))) |
6 | elnnz1 12675 | . . . . . . 7 ⊢ ((𝐴 − 𝐵) ∈ ℕ ↔ ((𝐴 − 𝐵) ∈ ℤ ∧ 1 ≤ (𝐴 − 𝐵))) | |
7 | 5, 6 | sylibr 234 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 − 𝐵) ∈ ℕ) |
8 | simp3r 1202 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 − 𝐵) < 𝑁) | |
9 | elfzo1 13780 | . . . . . 6 ⊢ ((𝐴 − 𝐵) ∈ (1..^𝑁) ↔ ((𝐴 − 𝐵) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐴 − 𝐵) < 𝑁)) | |
10 | 7, 1, 8, 9 | syl3anbrc 1343 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 − 𝐵) ∈ (1..^𝑁)) |
11 | nnz 12666 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
12 | 11 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → 𝑁 ∈ ℤ) |
13 | fzoval 13728 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1))) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (1..^𝑁) = (1...(𝑁 − 1))) |
15 | 10, 14 | eleqtrd 2846 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 − 𝐵) ∈ (1...(𝑁 − 1))) |
16 | fzm1ndvds 16388 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 − 𝐵) ∈ (1...(𝑁 − 1))) → ¬ 𝑁 ∥ (𝐴 − 𝐵)) | |
17 | 1, 15, 16 | syl2anc 583 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → ¬ 𝑁 ∥ (𝐴 − 𝐵)) |
18 | 3simpa 1148 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))) | |
19 | 3anass 1095 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))) | |
20 | 18, 19 | sylibr 234 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
21 | moddvds 16330 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 𝐵))) | |
22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 𝐵))) |
23 | 17, 22 | mtbird 325 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → ¬ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) |
24 | 23 | neqned 2953 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 mod 𝑁) ≠ (𝐵 mod 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5167 (class class class)co 7451 1c1 11188 < clt 11327 ≤ cle 11328 − cmin 11524 ℕcn 12298 ℤcz 12645 ...cfz 13578 ..^cfzo 13722 mod cmo 13936 ∥ cdvds 16319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5318 ax-nul 5325 ax-pow 5384 ax-pr 5448 ax-un 7773 ax-cnex 11243 ax-resscn 11244 ax-1cn 11245 ax-icn 11246 ax-addcl 11247 ax-addrcl 11248 ax-mulcl 11249 ax-mulrcl 11250 ax-mulcom 11251 ax-addass 11252 ax-mulass 11253 ax-distr 11254 ax-i2m1 11255 ax-1ne0 11256 ax-1rid 11257 ax-rnegex 11258 ax-rrecex 11259 ax-cnre 11260 ax-pre-lttri 11261 ax-pre-lttrn 11262 ax-pre-ltadd 11263 ax-pre-mulgt0 11264 ax-pre-sup 11265 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4933 df-iun 5018 df-br 5168 df-opab 5230 df-mpt 5251 df-tr 5285 df-id 5594 df-eprel 5600 df-po 5608 df-so 5609 df-fr 5653 df-we 5655 df-xp 5707 df-rel 5708 df-cnv 5709 df-co 5710 df-dm 5711 df-rn 5712 df-res 5713 df-ima 5714 df-pred 6335 df-ord 6401 df-on 6402 df-lim 6403 df-suc 6404 df-iota 6528 df-fun 6578 df-fn 6579 df-f 6580 df-f1 6581 df-fo 6582 df-f1o 6583 df-fv 6584 df-riota 7407 df-ov 7454 df-oprab 7455 df-mpo 7456 df-om 7907 df-1st 8033 df-2nd 8034 df-frecs 8325 df-wrecs 8356 df-recs 8430 df-rdg 8469 df-er 8766 df-en 9007 df-dom 9008 df-sdom 9009 df-sup 9514 df-inf 9515 df-pnf 11329 df-mnf 11330 df-xr 11331 df-ltxr 11332 df-le 11333 df-sub 11526 df-neg 11527 df-div 11953 df-nn 12299 df-n0 12559 df-z 12646 df-uz 12911 df-rp 13067 df-fz 13579 df-fzo 13723 df-fl 13859 df-mod 13937 df-dvds 16320 |
This theorem is referenced by: zplusmodne 47266 m1modne 47271 minusmod5ne 47272 submodneaddmod 47274 |
Copyright terms: Public domain | W3C validator |