![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > difltmodne | Structured version Visualization version GIF version |
Description: Two nonnegative integers are not equal modulo a positive modulus if their difference is greater than 0 and less then the modulus. (Contributed by AV, 6-Sep-2025.) |
Ref | Expression |
---|---|
difltmodne | ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 mod 𝑁) ≠ (𝐵 mod 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1137 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → 𝑁 ∈ ℕ) | |
2 | zsubcl 12655 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℤ) | |
3 | simpl 482 | . . . . . . . . 9 ⊢ ((1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁) → 1 ≤ (𝐴 − 𝐵)) | |
4 | 2, 3 | anim12i 613 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → ((𝐴 − 𝐵) ∈ ℤ ∧ 1 ≤ (𝐴 − 𝐵))) |
5 | 4 | 3adant1 1131 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → ((𝐴 − 𝐵) ∈ ℤ ∧ 1 ≤ (𝐴 − 𝐵))) |
6 | elnnz1 12639 | . . . . . . 7 ⊢ ((𝐴 − 𝐵) ∈ ℕ ↔ ((𝐴 − 𝐵) ∈ ℤ ∧ 1 ≤ (𝐴 − 𝐵))) | |
7 | 5, 6 | sylibr 234 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 − 𝐵) ∈ ℕ) |
8 | simp3r 1203 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 − 𝐵) < 𝑁) | |
9 | elfzo1 13748 | . . . . . 6 ⊢ ((𝐴 − 𝐵) ∈ (1..^𝑁) ↔ ((𝐴 − 𝐵) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐴 − 𝐵) < 𝑁)) | |
10 | 7, 1, 8, 9 | syl3anbrc 1344 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 − 𝐵) ∈ (1..^𝑁)) |
11 | nnz 12630 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
12 | 11 | 3ad2ant1 1134 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → 𝑁 ∈ ℤ) |
13 | fzoval 13696 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1))) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (1..^𝑁) = (1...(𝑁 − 1))) |
15 | 10, 14 | eleqtrd 2842 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 − 𝐵) ∈ (1...(𝑁 − 1))) |
16 | fzm1ndvds 16355 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 − 𝐵) ∈ (1...(𝑁 − 1))) → ¬ 𝑁 ∥ (𝐴 − 𝐵)) | |
17 | 1, 15, 16 | syl2anc 584 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → ¬ 𝑁 ∥ (𝐴 − 𝐵)) |
18 | 3simpa 1149 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))) | |
19 | 3anass 1095 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))) | |
20 | 18, 19 | sylibr 234 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
21 | moddvds 16297 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 𝐵))) | |
22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 𝐵))) |
23 | 17, 22 | mtbird 325 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → ¬ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) |
24 | 23 | neqned 2946 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 mod 𝑁) ≠ (𝐵 mod 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2939 class class class wbr 5141 (class class class)co 7429 1c1 11152 < clt 11291 ≤ cle 11292 − cmin 11488 ℕcn 12262 ℤcz 12609 ...cfz 13543 ..^cfzo 13690 mod cmo 13905 ∥ cdvds 16286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 ax-pre-sup 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-sup 9478 df-inf 9479 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-div 11917 df-nn 12263 df-n0 12523 df-z 12610 df-uz 12875 df-rp 13031 df-fz 13544 df-fzo 13691 df-fl 13828 df-mod 13906 df-dvds 16287 |
This theorem is referenced by: zplusmodne 47318 m1modne 47323 minusmod5ne 47324 submodneaddmod 47326 |
Copyright terms: Public domain | W3C validator |