| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > difltmodne | Structured version Visualization version GIF version | ||
| Description: Two nonnegative integers are not equal modulo a positive modulus if their difference is greater than 0 and less than the modulus. (Contributed by AV, 6-Sep-2025.) |
| Ref | Expression |
|---|---|
| difltmodne | ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 mod 𝑁) ≠ (𝐵 mod 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → 𝑁 ∈ ℕ) | |
| 2 | zsubcl 12536 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℤ) | |
| 3 | simpl 482 | . . . . . . . . 9 ⊢ ((1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁) → 1 ≤ (𝐴 − 𝐵)) | |
| 4 | 2, 3 | anim12i 613 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → ((𝐴 − 𝐵) ∈ ℤ ∧ 1 ≤ (𝐴 − 𝐵))) |
| 5 | 4 | 3adant1 1130 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → ((𝐴 − 𝐵) ∈ ℤ ∧ 1 ≤ (𝐴 − 𝐵))) |
| 6 | elnnz1 12520 | . . . . . . 7 ⊢ ((𝐴 − 𝐵) ∈ ℕ ↔ ((𝐴 − 𝐵) ∈ ℤ ∧ 1 ≤ (𝐴 − 𝐵))) | |
| 7 | 5, 6 | sylibr 234 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 − 𝐵) ∈ ℕ) |
| 8 | simp3r 1203 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 − 𝐵) < 𝑁) | |
| 9 | elfzo1 13634 | . . . . . 6 ⊢ ((𝐴 − 𝐵) ∈ (1..^𝑁) ↔ ((𝐴 − 𝐵) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐴 − 𝐵) < 𝑁)) | |
| 10 | 7, 1, 8, 9 | syl3anbrc 1344 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 − 𝐵) ∈ (1..^𝑁)) |
| 11 | nnz 12511 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 12 | 11 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → 𝑁 ∈ ℤ) |
| 13 | fzoval 13582 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (1..^𝑁) = (1...(𝑁 − 1))) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (1..^𝑁) = (1...(𝑁 − 1))) |
| 15 | 10, 14 | eleqtrd 2830 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 − 𝐵) ∈ (1...(𝑁 − 1))) |
| 16 | fzm1ndvds 16252 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 − 𝐵) ∈ (1...(𝑁 − 1))) → ¬ 𝑁 ∥ (𝐴 − 𝐵)) | |
| 17 | 1, 15, 16 | syl2anc 584 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → ¬ 𝑁 ∥ (𝐴 − 𝐵)) |
| 18 | 3simpa 1148 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))) | |
| 19 | 3anass 1094 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))) | |
| 20 | 18, 19 | sylibr 234 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
| 21 | moddvds 16193 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 𝐵))) | |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 𝐵))) |
| 23 | 17, 22 | mtbird 325 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → ¬ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)) |
| 24 | 23 | neqned 2932 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (1 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝑁)) → (𝐴 mod 𝑁) ≠ (𝐵 mod 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 (class class class)co 7353 1c1 11029 < clt 11168 ≤ cle 11169 − cmin 11366 ℕcn 12147 ℤcz 12490 ...cfz 13429 ..^cfzo 13576 mod cmo 13792 ∥ cdvds 16182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-n0 12404 df-z 12491 df-uz 12755 df-rp 12913 df-fz 13430 df-fzo 13577 df-fl 13715 df-mod 13793 df-dvds 16183 |
| This theorem is referenced by: zplusmodne 47347 m1modne 47352 minusmod5ne 47353 submodneaddmod 47355 |
| Copyright terms: Public domain | W3C validator |