MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcn1 Structured version   Visualization version   GIF version

Theorem cncfcn1 24755
Description: Relate complex function continuity to topological continuity. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.)
Hypothesis
Ref Expression
cncfcn1.1 𝐽 = (TopOpenβ€˜β„‚fld)
Assertion
Ref Expression
cncfcn1 (ℂ–cnβ†’β„‚) = (𝐽 Cn 𝐽)

Proof of Theorem cncfcn1
StepHypRef Expression
1 ssid 3997 . 2 β„‚ βŠ† β„‚
2 cncfcn1.1 . . 3 𝐽 = (TopOpenβ€˜β„‚fld)
32cnfldtopon 24623 . . . 4 𝐽 ∈ (TopOnβ€˜β„‚)
43toponrestid 22747 . . 3 𝐽 = (𝐽 β†Ύt β„‚)
52, 4, 4cncfcn 24754 . 2 ((β„‚ βŠ† β„‚ ∧ β„‚ βŠ† β„‚) β†’ (ℂ–cnβ†’β„‚) = (𝐽 Cn 𝐽))
61, 1, 5mp2an 689 1 (ℂ–cnβ†’β„‚) = (𝐽 Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533   βŠ† wss 3941  β€˜cfv 6534  (class class class)co 7402  β„‚cc 11105  TopOpenctopn 17368  β„‚fldccnfld 21230   Cn ccn 23052  β€“cnβ†’ccncf 24720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-q 12931  df-rp 12973  df-xneg 13090  df-xadd 13091  df-xmul 13092  df-fz 13483  df-seq 13965  df-exp 14026  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-struct 17081  df-slot 17116  df-ndx 17128  df-base 17146  df-plusg 17211  df-mulr 17212  df-starv 17213  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-rest 17369  df-topn 17370  df-topgen 17390  df-psmet 21222  df-xmet 21223  df-met 21224  df-bl 21225  df-mopn 21226  df-cnfld 21231  df-top 22720  df-topon 22737  df-topsp 22759  df-bases 22773  df-cn 23055  df-cnp 23056  df-xms 24150  df-ms 24151  df-cncf 24722
This theorem is referenced by:  expcncf  24771  dvcjbr  25805  plycn  26117  plycnOLD  26118  psercn2  26278  psercn2OLD  26279  efopn  26511  cxpcn  26598  cxpcnOLD  26599  efrlim  26820  efrlimOLD  26821  pntlem3  27461  cvxpconn  34724  sinccvglem  35148  dvtanlem  37031  climexp  44831  fprodsub2cncf  45131  fprodadd2cncf  45132
  Copyright terms: Public domain W3C validator