| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znleval | Unicode version | ||
| Description: The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| znle2.y |
|
| znle2.f |
|
| znle2.w |
|
| znle2.l |
|
| znleval.x |
|
| Ref | Expression |
|---|---|
| znleval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znle2.y |
. . . . . . 7
| |
| 2 | znle2.f |
. . . . . . 7
| |
| 3 | znle2.w |
. . . . . . 7
| |
| 4 | znle2.l |
. . . . . . 7
| |
| 5 | 1, 2, 3, 4 | znle2 14624 |
. . . . . 6
|
| 6 | relco 5227 |
. . . . . . . 8
| |
| 7 | relssdmrn 5249 |
. . . . . . . 8
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . 7
|
| 9 | dmcoss 4994 |
. . . . . . . . 9
| |
| 10 | df-rn 4730 |
. . . . . . . . . 10
| |
| 11 | znleval.x |
. . . . . . . . . . . 12
| |
| 12 | 1, 11, 2, 3 | znf1o 14623 |
. . . . . . . . . . 11
|
| 13 | f1ofo 5581 |
. . . . . . . . . . 11
| |
| 14 | forn 5553 |
. . . . . . . . . . 11
| |
| 15 | 12, 13, 14 | 3syl 17 |
. . . . . . . . . 10
|
| 16 | 10, 15 | eqtr3id 2276 |
. . . . . . . . 9
|
| 17 | 9, 16 | sseqtrid 3274 |
. . . . . . . 8
|
| 18 | rncoss 4995 |
. . . . . . . . 9
| |
| 19 | rncoss 4995 |
. . . . . . . . . 10
| |
| 20 | 19, 15 | sseqtrid 3274 |
. . . . . . . . 9
|
| 21 | 18, 20 | sstrid 3235 |
. . . . . . . 8
|
| 22 | xpss12 4826 |
. . . . . . . 8
| |
| 23 | 17, 21, 22 | syl2anc 411 |
. . . . . . 7
|
| 24 | 8, 23 | sstrid 3235 |
. . . . . 6
|
| 25 | 5, 24 | eqsstrd 3260 |
. . . . 5
|
| 26 | 25 | ssbrd 4126 |
. . . 4
|
| 27 | brxp 4750 |
. . . 4
| |
| 28 | 26, 27 | imbitrdi 161 |
. . 3
|
| 29 | 28 | pm4.71rd 394 |
. 2
|
| 30 | 5 | adantr 276 |
. . . . . 6
|
| 31 | 30 | breqd 4094 |
. . . . 5
|
| 32 | brcog 4889 |
. . . . . . 7
| |
| 33 | 32 | adantl 277 |
. . . . . 6
|
| 34 | eqcom 2231 |
. . . . . . . . 9
| |
| 35 | 12 | adantr 276 |
. . . . . . . . . . 11
|
| 36 | f1ocnv 5587 |
. . . . . . . . . . 11
| |
| 37 | f1ofn 5575 |
. . . . . . . . . . 11
| |
| 38 | 35, 36, 37 | 3syl 17 |
. . . . . . . . . 10
|
| 39 | simprl 529 |
. . . . . . . . . 10
| |
| 40 | fnbrfvb 5674 |
. . . . . . . . . 10
| |
| 41 | 38, 39, 40 | syl2anc 411 |
. . . . . . . . 9
|
| 42 | 34, 41 | bitr2id 193 |
. . . . . . . 8
|
| 43 | 42 | anbi1d 465 |
. . . . . . 7
|
| 44 | 43 | exbidv 1871 |
. . . . . 6
|
| 45 | 33, 44 | bitrd 188 |
. . . . 5
|
| 46 | 1 | zncrng 14617 |
. . . . . . . . . . . 12
|
| 47 | eqid 2229 |
. . . . . . . . . . . . 13
| |
| 48 | 47 | zrhex 14593 |
. . . . . . . . . . . 12
|
| 49 | resexg 5045 |
. . . . . . . . . . . 12
| |
| 50 | 46, 48, 49 | 3syl 17 |
. . . . . . . . . . 11
|
| 51 | 2, 50 | eqeltrid 2316 |
. . . . . . . . . 10
|
| 52 | cnvexg 5266 |
. . . . . . . . . 10
| |
| 53 | 51, 52 | syl 14 |
. . . . . . . . 9
|
| 54 | 53 | adantr 276 |
. . . . . . . 8
|
| 55 | fvexg 5648 |
. . . . . . . 8
| |
| 56 | 54, 39, 55 | syl2anc 411 |
. . . . . . 7
|
| 57 | breq1 4086 |
. . . . . . . 8
| |
| 58 | 57 | ceqsexgv 2932 |
. . . . . . 7
|
| 59 | 56, 58 | syl 14 |
. . . . . 6
|
| 60 | simprr 531 |
. . . . . . . 8
| |
| 61 | brcog 4889 |
. . . . . . . 8
| |
| 62 | 56, 60, 61 | syl2anc 411 |
. . . . . . 7
|
| 63 | eqcom 2231 |
. . . . . . . . . . . 12
| |
| 64 | fnbrfvb 5674 |
. . . . . . . . . . . . 13
| |
| 65 | 38, 60, 64 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 66 | 63, 65 | bitrid 192 |
. . . . . . . . . . 11
|
| 67 | vex 2802 |
. . . . . . . . . . . 12
| |
| 68 | brcnvg 4903 |
. . . . . . . . . . . 12
| |
| 69 | 60, 67, 68 | sylancl 413 |
. . . . . . . . . . 11
|
| 70 | 66, 69 | bitrd 188 |
. . . . . . . . . 10
|
| 71 | 70 | anbi1d 465 |
. . . . . . . . 9
|
| 72 | 71 | biancomd 271 |
. . . . . . . 8
|
| 73 | 72 | exbidv 1871 |
. . . . . . 7
|
| 74 | fvexg 5648 |
. . . . . . . . 9
| |
| 75 | 54, 60, 74 | syl2anc 411 |
. . . . . . . 8
|
| 76 | breq2 4087 |
. . . . . . . . 9
| |
| 77 | 76 | ceqsexgv 2932 |
. . . . . . . 8
|
| 78 | 75, 77 | syl 14 |
. . . . . . 7
|
| 79 | 62, 73, 78 | 3bitr2d 216 |
. . . . . 6
|
| 80 | 59, 79 | bitrd 188 |
. . . . 5
|
| 81 | 31, 45, 80 | 3bitrd 214 |
. . . 4
|
| 82 | 81 | pm5.32da 452 |
. . 3
|
| 83 | df-3an 1004 |
. . 3
| |
| 84 | 82, 83 | bitr4di 198 |
. 2
|
| 85 | 29, 84 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-addf 8129 ax-mulf 8130 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-tpos 6397 df-recs 6457 df-frec 6543 df-er 6688 df-ec 6690 df-qs 6694 df-map 6805 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fzo 10347 df-fl 10498 df-mod 10553 df-seqfrec 10678 df-cj 11361 df-abs 11518 df-dvds 12307 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-mulr 13132 df-starv 13133 df-sca 13134 df-vsca 13135 df-ip 13136 df-tset 13137 df-ple 13138 df-ds 13140 df-unif 13141 df-0g 13299 df-topgen 13301 df-iimas 13343 df-qus 13344 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-mhm 13500 df-grp 13544 df-minusg 13545 df-sbg 13546 df-mulg 13665 df-subg 13715 df-nsg 13716 df-eqg 13717 df-ghm 13786 df-cmn 13831 df-abl 13832 df-mgp 13892 df-rng 13904 df-ur 13931 df-srg 13935 df-ring 13969 df-cring 13970 df-oppr 14039 df-dvdsr 14060 df-rhm 14124 df-subrg 14191 df-lmod 14261 df-lssm 14325 df-lsp 14359 df-sra 14407 df-rgmod 14408 df-lidl 14441 df-rsp 14442 df-2idl 14472 df-bl 14518 df-mopn 14519 df-fg 14521 df-metu 14522 df-cnfld 14529 df-zring 14563 df-zrh 14586 df-zn 14588 |
| This theorem is referenced by: znleval2 14626 |
| Copyright terms: Public domain | W3C validator |