ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znleval Unicode version

Theorem znleval 14285
Description: The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znle2.y  |-  Y  =  (ℤ/n `  N )
znle2.f  |-  F  =  ( ( ZRHom `  Y )  |`  W )
znle2.w  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
znle2.l  |-  .<_  =  ( le `  Y )
znleval.x  |-  X  =  ( Base `  Y
)
Assertion
Ref Expression
znleval  |-  ( N  e.  NN0  ->  ( A 
.<_  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( `' F `  A )  <_  ( `' F `  B ) ) ) )

Proof of Theorem znleval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 znle2.y . . . . . . 7  |-  Y  =  (ℤ/n `  N )
2 znle2.f . . . . . . 7  |-  F  =  ( ( ZRHom `  Y )  |`  W )
3 znle2.w . . . . . . 7  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
4 znle2.l . . . . . . 7  |-  .<_  =  ( le `  Y )
51, 2, 3, 4znle2 14284 . . . . . 6  |-  ( N  e.  NN0  ->  .<_  =  ( ( F  o.  <_  )  o.  `' F ) )
6 relco 5169 . . . . . . . 8  |-  Rel  (
( F  o.  <_  )  o.  `' F )
7 relssdmrn 5191 . . . . . . . 8  |-  ( Rel  ( ( F  o.  <_  )  o.  `' F
)  ->  ( ( F  o.  <_  )  o.  `' F )  C_  ( dom  ( ( F  o.  <_  )  o.  `' F
)  X.  ran  (
( F  o.  <_  )  o.  `' F ) ) )
86, 7ax-mp 5 . . . . . . 7  |-  ( ( F  o.  <_  )  o.  `' F )  C_  ( dom  ( ( F  o.  <_  )  o.  `' F
)  X.  ran  (
( F  o.  <_  )  o.  `' F ) )
9 dmcoss 4936 . . . . . . . . 9  |-  dom  (
( F  o.  <_  )  o.  `' F ) 
C_  dom  `' F
10 df-rn 4675 . . . . . . . . . 10  |-  ran  F  =  dom  `' F
11 znleval.x . . . . . . . . . . . 12  |-  X  =  ( Base `  Y
)
121, 11, 2, 3znf1o 14283 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  F : W
-1-1-onto-> X )
13 f1ofo 5514 . . . . . . . . . . 11  |-  ( F : W -1-1-onto-> X  ->  F : W -onto-> X )
14 forn 5486 . . . . . . . . . . 11  |-  ( F : W -onto-> X  ->  ran  F  =  X )
1512, 13, 143syl 17 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ran  F  =  X )
1610, 15eqtr3id 2243 . . . . . . . . 9  |-  ( N  e.  NN0  ->  dom  `' F  =  X )
179, 16sseqtrid 3234 . . . . . . . 8  |-  ( N  e.  NN0  ->  dom  (
( F  o.  <_  )  o.  `' F ) 
C_  X )
18 rncoss 4937 . . . . . . . . 9  |-  ran  (
( F  o.  <_  )  o.  `' F ) 
C_  ran  ( F  o.  <_  )
19 rncoss 4937 . . . . . . . . . 10  |-  ran  ( F  o.  <_  )  C_  ran  F
2019, 15sseqtrid 3234 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ran  ( F  o.  <_  )  C_  X )
2118, 20sstrid 3195 . . . . . . . 8  |-  ( N  e.  NN0  ->  ran  (
( F  o.  <_  )  o.  `' F ) 
C_  X )
22 xpss12 4771 . . . . . . . 8  |-  ( ( dom  ( ( F  o.  <_  )  o.  `' F )  C_  X  /\  ran  ( ( F  o.  <_  )  o.  `' F )  C_  X
)  ->  ( dom  ( ( F  o.  <_  )  o.  `' F
)  X.  ran  (
( F  o.  <_  )  o.  `' F ) )  C_  ( X  X.  X ) )
2317, 21, 22syl2anc 411 . . . . . . 7  |-  ( N  e.  NN0  ->  ( dom  ( ( F  o.  <_  )  o.  `' F
)  X.  ran  (
( F  o.  <_  )  o.  `' F ) )  C_  ( X  X.  X ) )
248, 23sstrid 3195 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( F  o.  <_  )  o.  `' F )  C_  ( X  X.  X ) )
255, 24eqsstrd 3220 . . . . 5  |-  ( N  e.  NN0  ->  .<_  C_  ( X  X.  X ) )
2625ssbrd 4077 . . . 4  |-  ( N  e.  NN0  ->  ( A 
.<_  B  ->  A ( X  X.  X ) B ) )
27 brxp 4695 . . . 4  |-  ( A ( X  X.  X
) B  <->  ( A  e.  X  /\  B  e.  X ) )
2826, 27imbitrdi 161 . . 3  |-  ( N  e.  NN0  ->  ( A 
.<_  B  ->  ( A  e.  X  /\  B  e.  X ) ) )
2928pm4.71rd 394 . 2  |-  ( N  e.  NN0  ->  ( A 
.<_  B  <->  ( ( A  e.  X  /\  B  e.  X )  /\  A  .<_  B ) ) )
305adantr 276 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  .<_  =  ( ( F  o.  <_  )  o.  `' F
) )
3130breqd 4045 . . . . 5  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A  .<_  B  <->  A (
( F  o.  <_  )  o.  `' F ) B ) )
32 brcog 4834 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A ( ( F  o.  <_  )  o.  `' F ) B  <->  E. x
( A `' F x  /\  x ( F  o.  <_  ) B
) ) )
3332adantl 277 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A ( ( F  o.  <_  )  o.  `' F ) B  <->  E. x
( A `' F x  /\  x ( F  o.  <_  ) B
) ) )
34 eqcom 2198 . . . . . . . . 9  |-  ( x  =  ( `' F `  A )  <->  ( `' F `  A )  =  x )
3512adantr 276 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  F : W -1-1-onto-> X )
36 f1ocnv 5520 . . . . . . . . . . 11  |-  ( F : W -1-1-onto-> X  ->  `' F : X -1-1-onto-> W )
37 f1ofn 5508 . . . . . . . . . . 11  |-  ( `' F : X -1-1-onto-> W  ->  `' F  Fn  X
)
3835, 36, 373syl 17 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  `' F  Fn  X )
39 simprl 529 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  A  e.  X )
40 fnbrfvb 5604 . . . . . . . . . 10  |-  ( ( `' F  Fn  X  /\  A  e.  X
)  ->  ( ( `' F `  A )  =  x  <->  A `' F x ) )
4138, 39, 40syl2anc 411 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( `' F `  A )  =  x  <-> 
A `' F x ) )
4234, 41bitr2id 193 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A `' F x  <->  x  =  ( `' F `  A ) ) )
4342anbi1d 465 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( A `' F x  /\  x ( F  o.  <_  ) B
)  <->  ( x  =  ( `' F `  A )  /\  x
( F  o.  <_  ) B ) ) )
4443exbidv 1839 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( E. x ( A `' F x  /\  x
( F  o.  <_  ) B )  <->  E. x
( x  =  ( `' F `  A )  /\  x ( F  o.  <_  ) B
) ) )
4533, 44bitrd 188 . . . . 5  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A ( ( F  o.  <_  )  o.  `' F ) B  <->  E. x
( x  =  ( `' F `  A )  /\  x ( F  o.  <_  ) B
) ) )
461zncrng 14277 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
47 eqid 2196 . . . . . . . . . . . . 13  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
4847zrhex 14253 . . . . . . . . . . . 12  |-  ( Y  e.  CRing  ->  ( ZRHom `  Y )  e.  _V )
49 resexg 4987 . . . . . . . . . . . 12  |-  ( ( ZRHom `  Y )  e.  _V  ->  ( ( ZRHom `  Y )  |`  W )  e.  _V )
5046, 48, 493syl 17 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( ( ZRHom `  Y )  |`  W )  e.  _V )
512, 50eqeltrid 2283 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  F  e. 
_V )
52 cnvexg 5208 . . . . . . . . . 10  |-  ( F  e.  _V  ->  `' F  e.  _V )
5351, 52syl 14 . . . . . . . . 9  |-  ( N  e.  NN0  ->  `' F  e.  _V )
5453adantr 276 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  `' F  e.  _V )
55 fvexg 5580 . . . . . . . 8  |-  ( ( `' F  e.  _V  /\  A  e.  X )  ->  ( `' F `  A )  e.  _V )
5654, 39, 55syl2anc 411 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( `' F `  A )  e.  _V )
57 breq1 4037 . . . . . . . 8  |-  ( x  =  ( `' F `  A )  ->  (
x ( F  o.  <_  ) B  <->  ( `' F `  A )
( F  o.  <_  ) B ) )
5857ceqsexgv 2893 . . . . . . 7  |-  ( ( `' F `  A )  e.  _V  ->  ( E. x ( x  =  ( `' F `  A )  /\  x
( F  o.  <_  ) B )  <->  ( `' F `  A )
( F  o.  <_  ) B ) )
5956, 58syl 14 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( E. x ( x  =  ( `' F `  A )  /\  x
( F  o.  <_  ) B )  <->  ( `' F `  A )
( F  o.  <_  ) B ) )
60 simprr 531 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  B  e.  X )
61 brcog 4834 . . . . . . . 8  |-  ( ( ( `' F `  A )  e.  _V  /\  B  e.  X )  ->  ( ( `' F `  A ) ( F  o.  <_  ) B  <->  E. x ( ( `' F `  A )  <_  x  /\  x F B ) ) )
6256, 60, 61syl2anc 411 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( `' F `  A ) ( F  o.  <_  ) B  <->  E. x ( ( `' F `  A )  <_  x  /\  x F B ) ) )
63 eqcom 2198 . . . . . . . . . . . 12  |-  ( x  =  ( `' F `  B )  <->  ( `' F `  B )  =  x )
64 fnbrfvb 5604 . . . . . . . . . . . . 13  |-  ( ( `' F  Fn  X  /\  B  e.  X
)  ->  ( ( `' F `  B )  =  x  <->  B `' F x ) )
6538, 60, 64syl2anc 411 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( `' F `  B )  =  x  <-> 
B `' F x ) )
6663, 65bitrid 192 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
x  =  ( `' F `  B )  <-> 
B `' F x ) )
67 vex 2766 . . . . . . . . . . . 12  |-  x  e. 
_V
68 brcnvg 4848 . . . . . . . . . . . 12  |-  ( ( B  e.  X  /\  x  e.  _V )  ->  ( B `' F x 
<->  x F B ) )
6960, 67, 68sylancl 413 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( B `' F x  <->  x F B ) )
7066, 69bitrd 188 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
x  =  ( `' F `  B )  <-> 
x F B ) )
7170anbi1d 465 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( x  =  ( `' F `  B )  /\  ( `' F `  A )  <_  x
)  <->  ( x F B  /\  ( `' F `  A )  <_  x ) ) )
7271biancomd 271 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( x  =  ( `' F `  B )  /\  ( `' F `  A )  <_  x
)  <->  ( ( `' F `  A )  <_  x  /\  x F B ) ) )
7372exbidv 1839 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( E. x ( x  =  ( `' F `  B )  /\  ( `' F `  A )  <_  x )  <->  E. x
( ( `' F `  A )  <_  x  /\  x F B ) ) )
74 fvexg 5580 . . . . . . . . 9  |-  ( ( `' F  e.  _V  /\  B  e.  X )  ->  ( `' F `  B )  e.  _V )
7554, 60, 74syl2anc 411 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( `' F `  B )  e.  _V )
76 breq2 4038 . . . . . . . . 9  |-  ( x  =  ( `' F `  B )  ->  (
( `' F `  A )  <_  x  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
7776ceqsexgv 2893 . . . . . . . 8  |-  ( ( `' F `  B )  e.  _V  ->  ( E. x ( x  =  ( `' F `  B )  /\  ( `' F `  A )  <_  x )  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
7875, 77syl 14 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( E. x ( x  =  ( `' F `  B )  /\  ( `' F `  A )  <_  x )  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
7962, 73, 783bitr2d 216 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( `' F `  A ) ( F  o.  <_  ) B  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
8059, 79bitrd 188 . . . . 5  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( E. x ( x  =  ( `' F `  A )  /\  x
( F  o.  <_  ) B )  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
8131, 45, 803bitrd 214 . . . 4  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A  .<_  B  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
8281pm5.32da 452 . . 3  |-  ( N  e.  NN0  ->  ( ( ( A  e.  X  /\  B  e.  X
)  /\  A  .<_  B )  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( `' F `  A )  <_  ( `' F `  B ) ) ) )
83 df-3an 982 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( `' F `  A )  <_  ( `' F `  B ) )  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( `' F `  A )  <_  ( `' F `  B ) ) )
8482, 83bitr4di 198 . 2  |-  ( N  e.  NN0  ->  ( ( ( A  e.  X  /\  B  e.  X
)  /\  A  .<_  B )  <->  ( A  e.  X  /\  B  e.  X  /\  ( `' F `  A )  <_  ( `' F `  B ) ) ) )
8529, 84bitrd 188 1  |-  ( N  e.  NN0  ->  ( A 
.<_  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( `' F `  A )  <_  ( `' F `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763    C_ wss 3157   ifcif 3562   class class class wbr 4034    X. cxp 4662   `'ccnv 4663   dom cdm 4664   ran crn 4665    |` cres 4666    o. ccom 4668   Rel wrel 4669    Fn wfn 5254   -onto->wfo 5257   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925   0cc0 7896    <_ cle 8079   NN0cn0 9266   ZZcz 9343  ..^cfzo 10234   Basecbs 12703   lecple 12787   CRingccrg 13629   ZRHomczrh 14243  ℤ/nczn 14245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-addf 8018  ax-mulf 8019
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-recs 6372  df-frec 6458  df-er 6601  df-ec 6603  df-qs 6607  df-map 6718  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-cj 11024  df-abs 11181  df-dvds 11970  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-starv 12795  df-sca 12796  df-vsca 12797  df-ip 12798  df-tset 12799  df-ple 12800  df-ds 12802  df-unif 12803  df-0g 12960  df-topgen 12962  df-iimas 13004  df-qus 13005  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-grp 13205  df-minusg 13206  df-sbg 13207  df-mulg 13326  df-subg 13376  df-nsg 13377  df-eqg 13378  df-ghm 13447  df-cmn 13492  df-abl 13493  df-mgp 13553  df-rng 13565  df-ur 13592  df-srg 13596  df-ring 13630  df-cring 13631  df-oppr 13700  df-dvdsr 13721  df-rhm 13784  df-subrg 13851  df-lmod 13921  df-lssm 13985  df-lsp 14019  df-sra 14067  df-rgmod 14068  df-lidl 14101  df-rsp 14102  df-2idl 14132  df-bl 14178  df-mopn 14179  df-fg 14181  df-metu 14182  df-cnfld 14189  df-zring 14223  df-zrh 14246  df-zn 14248
This theorem is referenced by:  znleval2  14286
  Copyright terms: Public domain W3C validator