ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znleval Unicode version

Theorem znleval 14582
Description: The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znle2.y  |-  Y  =  (ℤ/n `  N )
znle2.f  |-  F  =  ( ( ZRHom `  Y )  |`  W )
znle2.w  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
znle2.l  |-  .<_  =  ( le `  Y )
znleval.x  |-  X  =  ( Base `  Y
)
Assertion
Ref Expression
znleval  |-  ( N  e.  NN0  ->  ( A 
.<_  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( `' F `  A )  <_  ( `' F `  B ) ) ) )

Proof of Theorem znleval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 znle2.y . . . . . . 7  |-  Y  =  (ℤ/n `  N )
2 znle2.f . . . . . . 7  |-  F  =  ( ( ZRHom `  Y )  |`  W )
3 znle2.w . . . . . . 7  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
4 znle2.l . . . . . . 7  |-  .<_  =  ( le `  Y )
51, 2, 3, 4znle2 14581 . . . . . 6  |-  ( N  e.  NN0  ->  .<_  =  ( ( F  o.  <_  )  o.  `' F ) )
6 relco 5203 . . . . . . . 8  |-  Rel  (
( F  o.  <_  )  o.  `' F )
7 relssdmrn 5225 . . . . . . . 8  |-  ( Rel  ( ( F  o.  <_  )  o.  `' F
)  ->  ( ( F  o.  <_  )  o.  `' F )  C_  ( dom  ( ( F  o.  <_  )  o.  `' F
)  X.  ran  (
( F  o.  <_  )  o.  `' F ) ) )
86, 7ax-mp 5 . . . . . . 7  |-  ( ( F  o.  <_  )  o.  `' F )  C_  ( dom  ( ( F  o.  <_  )  o.  `' F
)  X.  ran  (
( F  o.  <_  )  o.  `' F ) )
9 dmcoss 4970 . . . . . . . . 9  |-  dom  (
( F  o.  <_  )  o.  `' F ) 
C_  dom  `' F
10 df-rn 4707 . . . . . . . . . 10  |-  ran  F  =  dom  `' F
11 znleval.x . . . . . . . . . . . 12  |-  X  =  ( Base `  Y
)
121, 11, 2, 3znf1o 14580 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  F : W
-1-1-onto-> X )
13 f1ofo 5555 . . . . . . . . . . 11  |-  ( F : W -1-1-onto-> X  ->  F : W -onto-> X )
14 forn 5527 . . . . . . . . . . 11  |-  ( F : W -onto-> X  ->  ran  F  =  X )
1512, 13, 143syl 17 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ran  F  =  X )
1610, 15eqtr3id 2256 . . . . . . . . 9  |-  ( N  e.  NN0  ->  dom  `' F  =  X )
179, 16sseqtrid 3254 . . . . . . . 8  |-  ( N  e.  NN0  ->  dom  (
( F  o.  <_  )  o.  `' F ) 
C_  X )
18 rncoss 4971 . . . . . . . . 9  |-  ran  (
( F  o.  <_  )  o.  `' F ) 
C_  ran  ( F  o.  <_  )
19 rncoss 4971 . . . . . . . . . 10  |-  ran  ( F  o.  <_  )  C_  ran  F
2019, 15sseqtrid 3254 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ran  ( F  o.  <_  )  C_  X )
2118, 20sstrid 3215 . . . . . . . 8  |-  ( N  e.  NN0  ->  ran  (
( F  o.  <_  )  o.  `' F ) 
C_  X )
22 xpss12 4803 . . . . . . . 8  |-  ( ( dom  ( ( F  o.  <_  )  o.  `' F )  C_  X  /\  ran  ( ( F  o.  <_  )  o.  `' F )  C_  X
)  ->  ( dom  ( ( F  o.  <_  )  o.  `' F
)  X.  ran  (
( F  o.  <_  )  o.  `' F ) )  C_  ( X  X.  X ) )
2317, 21, 22syl2anc 411 . . . . . . 7  |-  ( N  e.  NN0  ->  ( dom  ( ( F  o.  <_  )  o.  `' F
)  X.  ran  (
( F  o.  <_  )  o.  `' F ) )  C_  ( X  X.  X ) )
248, 23sstrid 3215 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( F  o.  <_  )  o.  `' F )  C_  ( X  X.  X ) )
255, 24eqsstrd 3240 . . . . 5  |-  ( N  e.  NN0  ->  .<_  C_  ( X  X.  X ) )
2625ssbrd 4105 . . . 4  |-  ( N  e.  NN0  ->  ( A 
.<_  B  ->  A ( X  X.  X ) B ) )
27 brxp 4727 . . . 4  |-  ( A ( X  X.  X
) B  <->  ( A  e.  X  /\  B  e.  X ) )
2826, 27imbitrdi 161 . . 3  |-  ( N  e.  NN0  ->  ( A 
.<_  B  ->  ( A  e.  X  /\  B  e.  X ) ) )
2928pm4.71rd 394 . 2  |-  ( N  e.  NN0  ->  ( A 
.<_  B  <->  ( ( A  e.  X  /\  B  e.  X )  /\  A  .<_  B ) ) )
305adantr 276 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  .<_  =  ( ( F  o.  <_  )  o.  `' F
) )
3130breqd 4073 . . . . 5  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A  .<_  B  <->  A (
( F  o.  <_  )  o.  `' F ) B ) )
32 brcog 4866 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A ( ( F  o.  <_  )  o.  `' F ) B  <->  E. x
( A `' F x  /\  x ( F  o.  <_  ) B
) ) )
3332adantl 277 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A ( ( F  o.  <_  )  o.  `' F ) B  <->  E. x
( A `' F x  /\  x ( F  o.  <_  ) B
) ) )
34 eqcom 2211 . . . . . . . . 9  |-  ( x  =  ( `' F `  A )  <->  ( `' F `  A )  =  x )
3512adantr 276 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  F : W -1-1-onto-> X )
36 f1ocnv 5561 . . . . . . . . . . 11  |-  ( F : W -1-1-onto-> X  ->  `' F : X -1-1-onto-> W )
37 f1ofn 5549 . . . . . . . . . . 11  |-  ( `' F : X -1-1-onto-> W  ->  `' F  Fn  X
)
3835, 36, 373syl 17 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  `' F  Fn  X )
39 simprl 529 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  A  e.  X )
40 fnbrfvb 5646 . . . . . . . . . 10  |-  ( ( `' F  Fn  X  /\  A  e.  X
)  ->  ( ( `' F `  A )  =  x  <->  A `' F x ) )
4138, 39, 40syl2anc 411 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( `' F `  A )  =  x  <-> 
A `' F x ) )
4234, 41bitr2id 193 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A `' F x  <->  x  =  ( `' F `  A ) ) )
4342anbi1d 465 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( A `' F x  /\  x ( F  o.  <_  ) B
)  <->  ( x  =  ( `' F `  A )  /\  x
( F  o.  <_  ) B ) ) )
4443exbidv 1851 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( E. x ( A `' F x  /\  x
( F  o.  <_  ) B )  <->  E. x
( x  =  ( `' F `  A )  /\  x ( F  o.  <_  ) B
) ) )
4533, 44bitrd 188 . . . . 5  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A ( ( F  o.  <_  )  o.  `' F ) B  <->  E. x
( x  =  ( `' F `  A )  /\  x ( F  o.  <_  ) B
) ) )
461zncrng 14574 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
47 eqid 2209 . . . . . . . . . . . . 13  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
4847zrhex 14550 . . . . . . . . . . . 12  |-  ( Y  e.  CRing  ->  ( ZRHom `  Y )  e.  _V )
49 resexg 5021 . . . . . . . . . . . 12  |-  ( ( ZRHom `  Y )  e.  _V  ->  ( ( ZRHom `  Y )  |`  W )  e.  _V )
5046, 48, 493syl 17 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( ( ZRHom `  Y )  |`  W )  e.  _V )
512, 50eqeltrid 2296 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  F  e. 
_V )
52 cnvexg 5242 . . . . . . . . . 10  |-  ( F  e.  _V  ->  `' F  e.  _V )
5351, 52syl 14 . . . . . . . . 9  |-  ( N  e.  NN0  ->  `' F  e.  _V )
5453adantr 276 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  `' F  e.  _V )
55 fvexg 5622 . . . . . . . 8  |-  ( ( `' F  e.  _V  /\  A  e.  X )  ->  ( `' F `  A )  e.  _V )
5654, 39, 55syl2anc 411 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( `' F `  A )  e.  _V )
57 breq1 4065 . . . . . . . 8  |-  ( x  =  ( `' F `  A )  ->  (
x ( F  o.  <_  ) B  <->  ( `' F `  A )
( F  o.  <_  ) B ) )
5857ceqsexgv 2912 . . . . . . 7  |-  ( ( `' F `  A )  e.  _V  ->  ( E. x ( x  =  ( `' F `  A )  /\  x
( F  o.  <_  ) B )  <->  ( `' F `  A )
( F  o.  <_  ) B ) )
5956, 58syl 14 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( E. x ( x  =  ( `' F `  A )  /\  x
( F  o.  <_  ) B )  <->  ( `' F `  A )
( F  o.  <_  ) B ) )
60 simprr 531 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  B  e.  X )
61 brcog 4866 . . . . . . . 8  |-  ( ( ( `' F `  A )  e.  _V  /\  B  e.  X )  ->  ( ( `' F `  A ) ( F  o.  <_  ) B  <->  E. x ( ( `' F `  A )  <_  x  /\  x F B ) ) )
6256, 60, 61syl2anc 411 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( `' F `  A ) ( F  o.  <_  ) B  <->  E. x ( ( `' F `  A )  <_  x  /\  x F B ) ) )
63 eqcom 2211 . . . . . . . . . . . 12  |-  ( x  =  ( `' F `  B )  <->  ( `' F `  B )  =  x )
64 fnbrfvb 5646 . . . . . . . . . . . . 13  |-  ( ( `' F  Fn  X  /\  B  e.  X
)  ->  ( ( `' F `  B )  =  x  <->  B `' F x ) )
6538, 60, 64syl2anc 411 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( `' F `  B )  =  x  <-> 
B `' F x ) )
6663, 65bitrid 192 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
x  =  ( `' F `  B )  <-> 
B `' F x ) )
67 vex 2782 . . . . . . . . . . . 12  |-  x  e. 
_V
68 brcnvg 4880 . . . . . . . . . . . 12  |-  ( ( B  e.  X  /\  x  e.  _V )  ->  ( B `' F x 
<->  x F B ) )
6960, 67, 68sylancl 413 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( B `' F x  <->  x F B ) )
7066, 69bitrd 188 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
x  =  ( `' F `  B )  <-> 
x F B ) )
7170anbi1d 465 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( x  =  ( `' F `  B )  /\  ( `' F `  A )  <_  x
)  <->  ( x F B  /\  ( `' F `  A )  <_  x ) ) )
7271biancomd 271 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( x  =  ( `' F `  B )  /\  ( `' F `  A )  <_  x
)  <->  ( ( `' F `  A )  <_  x  /\  x F B ) ) )
7372exbidv 1851 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( E. x ( x  =  ( `' F `  B )  /\  ( `' F `  A )  <_  x )  <->  E. x
( ( `' F `  A )  <_  x  /\  x F B ) ) )
74 fvexg 5622 . . . . . . . . 9  |-  ( ( `' F  e.  _V  /\  B  e.  X )  ->  ( `' F `  B )  e.  _V )
7554, 60, 74syl2anc 411 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( `' F `  B )  e.  _V )
76 breq2 4066 . . . . . . . . 9  |-  ( x  =  ( `' F `  B )  ->  (
( `' F `  A )  <_  x  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
7776ceqsexgv 2912 . . . . . . . 8  |-  ( ( `' F `  B )  e.  _V  ->  ( E. x ( x  =  ( `' F `  B )  /\  ( `' F `  A )  <_  x )  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
7875, 77syl 14 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( E. x ( x  =  ( `' F `  B )  /\  ( `' F `  A )  <_  x )  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
7962, 73, 783bitr2d 216 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( `' F `  A ) ( F  o.  <_  ) B  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
8059, 79bitrd 188 . . . . 5  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( E. x ( x  =  ( `' F `  A )  /\  x
( F  o.  <_  ) B )  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
8131, 45, 803bitrd 214 . . . 4  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A  .<_  B  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
8281pm5.32da 452 . . 3  |-  ( N  e.  NN0  ->  ( ( ( A  e.  X  /\  B  e.  X
)  /\  A  .<_  B )  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( `' F `  A )  <_  ( `' F `  B ) ) ) )
83 df-3an 985 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( `' F `  A )  <_  ( `' F `  B ) )  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( `' F `  A )  <_  ( `' F `  B ) ) )
8482, 83bitr4di 198 . 2  |-  ( N  e.  NN0  ->  ( ( ( A  e.  X  /\  B  e.  X
)  /\  A  .<_  B )  <->  ( A  e.  X  /\  B  e.  X  /\  ( `' F `  A )  <_  ( `' F `  B ) ) ) )
8529, 84bitrd 188 1  |-  ( N  e.  NN0  ->  ( A 
.<_  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( `' F `  A )  <_  ( `' F `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 983    = wceq 1375   E.wex 1518    e. wcel 2180   _Vcvv 2779    C_ wss 3177   ifcif 3582   class class class wbr 4062    X. cxp 4694   `'ccnv 4695   dom cdm 4696   ran crn 4697    |` cres 4698    o. ccom 4700   Rel wrel 4701    Fn wfn 5289   -onto->wfo 5292   -1-1-onto->wf1o 5293   ` cfv 5294  (class class class)co 5974   0cc0 7967    <_ cle 8150   NN0cn0 9337   ZZcz 9414  ..^cfzo 10306   Basecbs 12998   lecple 13083   CRingccrg 13926   ZRHomczrh 14540  ℤ/nczn 14542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-tpos 6361  df-recs 6421  df-frec 6507  df-er 6650  df-ec 6652  df-qs 6656  df-map 6767  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-cj 11319  df-abs 11476  df-dvds 12265  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-starv 13091  df-sca 13092  df-vsca 13093  df-ip 13094  df-tset 13095  df-ple 13096  df-ds 13098  df-unif 13099  df-0g 13257  df-topgen 13259  df-iimas 13301  df-qus 13302  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-mhm 13458  df-grp 13502  df-minusg 13503  df-sbg 13504  df-mulg 13623  df-subg 13673  df-nsg 13674  df-eqg 13675  df-ghm 13744  df-cmn 13789  df-abl 13790  df-mgp 13850  df-rng 13862  df-ur 13889  df-srg 13893  df-ring 13927  df-cring 13928  df-oppr 13997  df-dvdsr 14018  df-rhm 14081  df-subrg 14148  df-lmod 14218  df-lssm 14282  df-lsp 14316  df-sra 14364  df-rgmod 14365  df-lidl 14398  df-rsp 14399  df-2idl 14429  df-bl 14475  df-mopn 14476  df-fg 14478  df-metu 14479  df-cnfld 14486  df-zring 14520  df-zrh 14543  df-zn 14545
This theorem is referenced by:  znleval2  14583
  Copyright terms: Public domain W3C validator