ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znleval Unicode version

Theorem znleval 14141
Description: The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znle2.y  |-  Y  =  (ℤ/n `  N )
znle2.f  |-  F  =  ( ( ZRHom `  Y )  |`  W )
znle2.w  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
znle2.l  |-  .<_  =  ( le `  Y )
znleval.x  |-  X  =  ( Base `  Y
)
Assertion
Ref Expression
znleval  |-  ( N  e.  NN0  ->  ( A 
.<_  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( `' F `  A )  <_  ( `' F `  B ) ) ) )

Proof of Theorem znleval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 znle2.y . . . . . . 7  |-  Y  =  (ℤ/n `  N )
2 znle2.f . . . . . . 7  |-  F  =  ( ( ZRHom `  Y )  |`  W )
3 znle2.w . . . . . . 7  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
4 znle2.l . . . . . . 7  |-  .<_  =  ( le `  Y )
51, 2, 3, 4znle2 14140 . . . . . 6  |-  ( N  e.  NN0  ->  .<_  =  ( ( F  o.  <_  )  o.  `' F ) )
6 relco 5164 . . . . . . . 8  |-  Rel  (
( F  o.  <_  )  o.  `' F )
7 relssdmrn 5186 . . . . . . . 8  |-  ( Rel  ( ( F  o.  <_  )  o.  `' F
)  ->  ( ( F  o.  <_  )  o.  `' F )  C_  ( dom  ( ( F  o.  <_  )  o.  `' F
)  X.  ran  (
( F  o.  <_  )  o.  `' F ) ) )
86, 7ax-mp 5 . . . . . . 7  |-  ( ( F  o.  <_  )  o.  `' F )  C_  ( dom  ( ( F  o.  <_  )  o.  `' F
)  X.  ran  (
( F  o.  <_  )  o.  `' F ) )
9 dmcoss 4931 . . . . . . . . 9  |-  dom  (
( F  o.  <_  )  o.  `' F ) 
C_  dom  `' F
10 df-rn 4670 . . . . . . . . . 10  |-  ran  F  =  dom  `' F
11 znleval.x . . . . . . . . . . . 12  |-  X  =  ( Base `  Y
)
121, 11, 2, 3znf1o 14139 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  F : W
-1-1-onto-> X )
13 f1ofo 5507 . . . . . . . . . . 11  |-  ( F : W -1-1-onto-> X  ->  F : W -onto-> X )
14 forn 5479 . . . . . . . . . . 11  |-  ( F : W -onto-> X  ->  ran  F  =  X )
1512, 13, 143syl 17 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ran  F  =  X )
1610, 15eqtr3id 2240 . . . . . . . . 9  |-  ( N  e.  NN0  ->  dom  `' F  =  X )
179, 16sseqtrid 3229 . . . . . . . 8  |-  ( N  e.  NN0  ->  dom  (
( F  o.  <_  )  o.  `' F ) 
C_  X )
18 rncoss 4932 . . . . . . . . 9  |-  ran  (
( F  o.  <_  )  o.  `' F ) 
C_  ran  ( F  o.  <_  )
19 rncoss 4932 . . . . . . . . . 10  |-  ran  ( F  o.  <_  )  C_  ran  F
2019, 15sseqtrid 3229 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ran  ( F  o.  <_  )  C_  X )
2118, 20sstrid 3190 . . . . . . . 8  |-  ( N  e.  NN0  ->  ran  (
( F  o.  <_  )  o.  `' F ) 
C_  X )
22 xpss12 4766 . . . . . . . 8  |-  ( ( dom  ( ( F  o.  <_  )  o.  `' F )  C_  X  /\  ran  ( ( F  o.  <_  )  o.  `' F )  C_  X
)  ->  ( dom  ( ( F  o.  <_  )  o.  `' F
)  X.  ran  (
( F  o.  <_  )  o.  `' F ) )  C_  ( X  X.  X ) )
2317, 21, 22syl2anc 411 . . . . . . 7  |-  ( N  e.  NN0  ->  ( dom  ( ( F  o.  <_  )  o.  `' F
)  X.  ran  (
( F  o.  <_  )  o.  `' F ) )  C_  ( X  X.  X ) )
248, 23sstrid 3190 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( F  o.  <_  )  o.  `' F )  C_  ( X  X.  X ) )
255, 24eqsstrd 3215 . . . . 5  |-  ( N  e.  NN0  ->  .<_  C_  ( X  X.  X ) )
2625ssbrd 4072 . . . 4  |-  ( N  e.  NN0  ->  ( A 
.<_  B  ->  A ( X  X.  X ) B ) )
27 brxp 4690 . . . 4  |-  ( A ( X  X.  X
) B  <->  ( A  e.  X  /\  B  e.  X ) )
2826, 27imbitrdi 161 . . 3  |-  ( N  e.  NN0  ->  ( A 
.<_  B  ->  ( A  e.  X  /\  B  e.  X ) ) )
2928pm4.71rd 394 . 2  |-  ( N  e.  NN0  ->  ( A 
.<_  B  <->  ( ( A  e.  X  /\  B  e.  X )  /\  A  .<_  B ) ) )
305adantr 276 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  .<_  =  ( ( F  o.  <_  )  o.  `' F
) )
3130breqd 4040 . . . . 5  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A  .<_  B  <->  A (
( F  o.  <_  )  o.  `' F ) B ) )
32 brcog 4829 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A ( ( F  o.  <_  )  o.  `' F ) B  <->  E. x
( A `' F x  /\  x ( F  o.  <_  ) B
) ) )
3332adantl 277 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A ( ( F  o.  <_  )  o.  `' F ) B  <->  E. x
( A `' F x  /\  x ( F  o.  <_  ) B
) ) )
34 eqcom 2195 . . . . . . . . 9  |-  ( x  =  ( `' F `  A )  <->  ( `' F `  A )  =  x )
3512adantr 276 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  F : W -1-1-onto-> X )
36 f1ocnv 5513 . . . . . . . . . . 11  |-  ( F : W -1-1-onto-> X  ->  `' F : X -1-1-onto-> W )
37 f1ofn 5501 . . . . . . . . . . 11  |-  ( `' F : X -1-1-onto-> W  ->  `' F  Fn  X
)
3835, 36, 373syl 17 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  `' F  Fn  X )
39 simprl 529 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  A  e.  X )
40 fnbrfvb 5597 . . . . . . . . . 10  |-  ( ( `' F  Fn  X  /\  A  e.  X
)  ->  ( ( `' F `  A )  =  x  <->  A `' F x ) )
4138, 39, 40syl2anc 411 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( `' F `  A )  =  x  <-> 
A `' F x ) )
4234, 41bitr2id 193 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A `' F x  <->  x  =  ( `' F `  A ) ) )
4342anbi1d 465 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( A `' F x  /\  x ( F  o.  <_  ) B
)  <->  ( x  =  ( `' F `  A )  /\  x
( F  o.  <_  ) B ) ) )
4443exbidv 1836 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( E. x ( A `' F x  /\  x
( F  o.  <_  ) B )  <->  E. x
( x  =  ( `' F `  A )  /\  x ( F  o.  <_  ) B
) ) )
4533, 44bitrd 188 . . . . 5  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A ( ( F  o.  <_  )  o.  `' F ) B  <->  E. x
( x  =  ( `' F `  A )  /\  x ( F  o.  <_  ) B
) ) )
461zncrng 14133 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
47 eqid 2193 . . . . . . . . . . . . 13  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
4847zrhex 14109 . . . . . . . . . . . 12  |-  ( Y  e.  CRing  ->  ( ZRHom `  Y )  e.  _V )
49 resexg 4982 . . . . . . . . . . . 12  |-  ( ( ZRHom `  Y )  e.  _V  ->  ( ( ZRHom `  Y )  |`  W )  e.  _V )
5046, 48, 493syl 17 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( ( ZRHom `  Y )  |`  W )  e.  _V )
512, 50eqeltrid 2280 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  F  e. 
_V )
52 cnvexg 5203 . . . . . . . . . 10  |-  ( F  e.  _V  ->  `' F  e.  _V )
5351, 52syl 14 . . . . . . . . 9  |-  ( N  e.  NN0  ->  `' F  e.  _V )
5453adantr 276 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  `' F  e.  _V )
55 fvexg 5573 . . . . . . . 8  |-  ( ( `' F  e.  _V  /\  A  e.  X )  ->  ( `' F `  A )  e.  _V )
5654, 39, 55syl2anc 411 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( `' F `  A )  e.  _V )
57 breq1 4032 . . . . . . . 8  |-  ( x  =  ( `' F `  A )  ->  (
x ( F  o.  <_  ) B  <->  ( `' F `  A )
( F  o.  <_  ) B ) )
5857ceqsexgv 2889 . . . . . . 7  |-  ( ( `' F `  A )  e.  _V  ->  ( E. x ( x  =  ( `' F `  A )  /\  x
( F  o.  <_  ) B )  <->  ( `' F `  A )
( F  o.  <_  ) B ) )
5956, 58syl 14 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( E. x ( x  =  ( `' F `  A )  /\  x
( F  o.  <_  ) B )  <->  ( `' F `  A )
( F  o.  <_  ) B ) )
60 simprr 531 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  B  e.  X )
61 brcog 4829 . . . . . . . 8  |-  ( ( ( `' F `  A )  e.  _V  /\  B  e.  X )  ->  ( ( `' F `  A ) ( F  o.  <_  ) B  <->  E. x ( ( `' F `  A )  <_  x  /\  x F B ) ) )
6256, 60, 61syl2anc 411 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( `' F `  A ) ( F  o.  <_  ) B  <->  E. x ( ( `' F `  A )  <_  x  /\  x F B ) ) )
63 eqcom 2195 . . . . . . . . . . . 12  |-  ( x  =  ( `' F `  B )  <->  ( `' F `  B )  =  x )
64 fnbrfvb 5597 . . . . . . . . . . . . 13  |-  ( ( `' F  Fn  X  /\  B  e.  X
)  ->  ( ( `' F `  B )  =  x  <->  B `' F x ) )
6538, 60, 64syl2anc 411 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( `' F `  B )  =  x  <-> 
B `' F x ) )
6663, 65bitrid 192 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
x  =  ( `' F `  B )  <-> 
B `' F x ) )
67 vex 2763 . . . . . . . . . . . 12  |-  x  e. 
_V
68 brcnvg 4843 . . . . . . . . . . . 12  |-  ( ( B  e.  X  /\  x  e.  _V )  ->  ( B `' F x 
<->  x F B ) )
6960, 67, 68sylancl 413 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( B `' F x  <->  x F B ) )
7066, 69bitrd 188 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
x  =  ( `' F `  B )  <-> 
x F B ) )
7170anbi1d 465 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( x  =  ( `' F `  B )  /\  ( `' F `  A )  <_  x
)  <->  ( x F B  /\  ( `' F `  A )  <_  x ) ) )
7271biancomd 271 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( x  =  ( `' F `  B )  /\  ( `' F `  A )  <_  x
)  <->  ( ( `' F `  A )  <_  x  /\  x F B ) ) )
7372exbidv 1836 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( E. x ( x  =  ( `' F `  B )  /\  ( `' F `  A )  <_  x )  <->  E. x
( ( `' F `  A )  <_  x  /\  x F B ) ) )
74 fvexg 5573 . . . . . . . . 9  |-  ( ( `' F  e.  _V  /\  B  e.  X )  ->  ( `' F `  B )  e.  _V )
7554, 60, 74syl2anc 411 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( `' F `  B )  e.  _V )
76 breq2 4033 . . . . . . . . 9  |-  ( x  =  ( `' F `  B )  ->  (
( `' F `  A )  <_  x  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
7776ceqsexgv 2889 . . . . . . . 8  |-  ( ( `' F `  B )  e.  _V  ->  ( E. x ( x  =  ( `' F `  B )  /\  ( `' F `  A )  <_  x )  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
7875, 77syl 14 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( E. x ( x  =  ( `' F `  B )  /\  ( `' F `  A )  <_  x )  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
7962, 73, 783bitr2d 216 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  (
( `' F `  A ) ( F  o.  <_  ) B  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
8059, 79bitrd 188 . . . . 5  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( E. x ( x  =  ( `' F `  A )  /\  x
( F  o.  <_  ) B )  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
8131, 45, 803bitrd 214 . . . 4  |-  ( ( N  e.  NN0  /\  ( A  e.  X  /\  B  e.  X
) )  ->  ( A  .<_  B  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
8281pm5.32da 452 . . 3  |-  ( N  e.  NN0  ->  ( ( ( A  e.  X  /\  B  e.  X
)  /\  A  .<_  B )  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( `' F `  A )  <_  ( `' F `  B ) ) ) )
83 df-3an 982 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( `' F `  A )  <_  ( `' F `  B ) )  <->  ( ( A  e.  X  /\  B  e.  X )  /\  ( `' F `  A )  <_  ( `' F `  B ) ) )
8482, 83bitr4di 198 . 2  |-  ( N  e.  NN0  ->  ( ( ( A  e.  X  /\  B  e.  X
)  /\  A  .<_  B )  <->  ( A  e.  X  /\  B  e.  X  /\  ( `' F `  A )  <_  ( `' F `  B ) ) ) )
8529, 84bitrd 188 1  |-  ( N  e.  NN0  ->  ( A 
.<_  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( `' F `  A )  <_  ( `' F `  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760    C_ wss 3153   ifcif 3557   class class class wbr 4029    X. cxp 4657   `'ccnv 4658   dom cdm 4659   ran crn 4660    |` cres 4661    o. ccom 4663   Rel wrel 4664    Fn wfn 5249   -onto->wfo 5252   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918   0cc0 7872    <_ cle 8055   NN0cn0 9240   ZZcz 9317  ..^cfzo 10208   Basecbs 12618   lecple 12702   CRingccrg 13493   ZRHomczrh 14099  ℤ/nczn 14101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-tpos 6298  df-recs 6358  df-frec 6444  df-er 6587  df-ec 6589  df-qs 6593  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-dec 9449  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-cj 10986  df-dvds 11931  df-struct 12620  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-starv 12710  df-sca 12711  df-vsca 12712  df-ip 12713  df-ple 12715  df-0g 12869  df-iimas 12885  df-qus 12886  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-grp 13075  df-minusg 13076  df-sbg 13077  df-mulg 13190  df-subg 13240  df-nsg 13241  df-eqg 13242  df-ghm 13311  df-cmn 13356  df-abl 13357  df-mgp 13417  df-rng 13429  df-ur 13456  df-srg 13460  df-ring 13494  df-cring 13495  df-oppr 13564  df-dvdsr 13585  df-rhm 13648  df-subrg 13715  df-lmod 13785  df-lssm 13849  df-lsp 13883  df-sra 13931  df-rgmod 13932  df-lidl 13965  df-rsp 13966  df-2idl 13996  df-icnfld 14048  df-zring 14079  df-zrh 14102  df-zn 14104
This theorem is referenced by:  znleval2  14142
  Copyright terms: Public domain W3C validator