ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcncfap GIF version

Theorem divcncfap 15130
Description: The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
divcncf.1 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
divcncfap.2 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0}))
Assertion
Ref Expression
divcncfap (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝑦,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝑋(𝑦)

Proof of Theorem divcncfap
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 divcncf.1 . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2 cncff 15093 . . . . . 6 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) → (𝑥𝑋𝐴):𝑋⟶ℂ)
31, 2syl 14 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
43fvmptelcdm 5740 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
5 divcncfap.2 . . . . . . . 8 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0}))
6 cncff 15093 . . . . . . . 8 ((𝑥𝑋𝐵) ∈ (𝑋cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (𝑥𝑋𝐵):𝑋⟶{𝑦 ∈ ℂ ∣ 𝑦 # 0})
75, 6syl 14 . . . . . . 7 (𝜑 → (𝑥𝑋𝐵):𝑋⟶{𝑦 ∈ ℂ ∣ 𝑦 # 0})
87fvmptelcdm 5740 . . . . . 6 ((𝜑𝑥𝑋) → 𝐵 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0})
9 breq1 4050 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 # 0 ↔ 𝐵 # 0))
109elrab 2930 . . . . . 6 (𝐵 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝐵 ∈ ℂ ∧ 𝐵 # 0))
118, 10sylib 122 . . . . 5 ((𝜑𝑥𝑋) → (𝐵 ∈ ℂ ∧ 𝐵 # 0))
1211simpld 112 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
1311simprd 114 . . . 4 ((𝜑𝑥𝑋) → 𝐵 # 0)
144, 12, 13divrecapd 8873 . . 3 ((𝜑𝑥𝑋) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
1514mpteq2dva 4138 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐵)) = (𝑥𝑋 ↦ (𝐴 · (1 / 𝐵))))
168ralrimiva 2580 . . . . . 6 (𝜑 → ∀𝑥𝑋 𝐵 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0})
17 eqidd 2207 . . . . . 6 (𝜑 → (𝑥𝑋𝐵) = (𝑥𝑋𝐵))
18 eqidd 2207 . . . . . 6 (𝜑 → (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) = (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)))
1916, 17, 18fmptcos 5755 . . . . 5 (𝜑 → ((𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∘ (𝑥𝑋𝐵)) = (𝑥𝑋𝐵 / 𝑧(1 / 𝑧)))
20 csbov2g 5993 . . . . . . . 8 (𝐵 ∈ ℂ → 𝐵 / 𝑧(1 / 𝑧) = (1 / 𝐵 / 𝑧𝑧))
2112, 20syl 14 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵 / 𝑧(1 / 𝑧) = (1 / 𝐵 / 𝑧𝑧))
22 csbvarg 3122 . . . . . . . . 9 (𝐵 ∈ ℂ → 𝐵 / 𝑧𝑧 = 𝐵)
2312, 22syl 14 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵 / 𝑧𝑧 = 𝐵)
2423oveq2d 5967 . . . . . . 7 ((𝜑𝑥𝑋) → (1 / 𝐵 / 𝑧𝑧) = (1 / 𝐵))
2521, 24eqtrd 2239 . . . . . 6 ((𝜑𝑥𝑋) → 𝐵 / 𝑧(1 / 𝑧) = (1 / 𝐵))
2625mpteq2dva 4138 . . . . 5 (𝜑 → (𝑥𝑋𝐵 / 𝑧(1 / 𝑧)) = (𝑥𝑋 ↦ (1 / 𝐵)))
2719, 26eqtr2d 2240 . . . 4 (𝜑 → (𝑥𝑋 ↦ (1 / 𝐵)) = ((𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∘ (𝑥𝑋𝐵)))
28 ax-1cn 8025 . . . . . 6 1 ∈ ℂ
29 eqid 2206 . . . . . . 7 (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) = (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧))
3029cdivcncfap 15120 . . . . . 6 (1 ∈ ℂ → (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
3128, 30mp1i 10 . . . . 5 (𝜑 → (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
325, 31cncfco 15107 . . . 4 (𝜑 → ((𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∘ (𝑥𝑋𝐵)) ∈ (𝑋cn→ℂ))
3327, 32eqeltrd 2283 . . 3 (𝜑 → (𝑥𝑋 ↦ (1 / 𝐵)) ∈ (𝑋cn→ℂ))
341, 33mulcncf 15124 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴 · (1 / 𝐵))) ∈ (𝑋cn→ℂ))
3515, 34eqeltrd 2283 1 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {crab 2489  csb 3094   class class class wbr 4047  cmpt 4109  ccom 4683  wf 5272  (class class class)co 5951  cc 7930  0cc0 7932  1c1 7933   · cmul 7937   # cap 8661   / cdiv 8752  cnccncf 15086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-map 6744  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-rp 9783  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-cncf 15087
This theorem is referenced by:  maxcncf  15131  mincncf  15132
  Copyright terms: Public domain W3C validator