ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcncfap GIF version

Theorem divcncfap 15253
Description: The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
divcncf.1 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
divcncfap.2 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0}))
Assertion
Ref Expression
divcncfap (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝑦,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝑋(𝑦)

Proof of Theorem divcncfap
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 divcncf.1 . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
2 cncff 15216 . . . . . 6 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) → (𝑥𝑋𝐴):𝑋⟶ℂ)
31, 2syl 14 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
43fvmptelcdm 5761 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
5 divcncfap.2 . . . . . . . 8 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0}))
6 cncff 15216 . . . . . . . 8 ((𝑥𝑋𝐵) ∈ (𝑋cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (𝑥𝑋𝐵):𝑋⟶{𝑦 ∈ ℂ ∣ 𝑦 # 0})
75, 6syl 14 . . . . . . 7 (𝜑 → (𝑥𝑋𝐵):𝑋⟶{𝑦 ∈ ℂ ∣ 𝑦 # 0})
87fvmptelcdm 5761 . . . . . 6 ((𝜑𝑥𝑋) → 𝐵 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0})
9 breq1 4065 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 # 0 ↔ 𝐵 # 0))
109elrab 2939 . . . . . 6 (𝐵 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝐵 ∈ ℂ ∧ 𝐵 # 0))
118, 10sylib 122 . . . . 5 ((𝜑𝑥𝑋) → (𝐵 ∈ ℂ ∧ 𝐵 # 0))
1211simpld 112 . . . 4 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
1311simprd 114 . . . 4 ((𝜑𝑥𝑋) → 𝐵 # 0)
144, 12, 13divrecapd 8908 . . 3 ((𝜑𝑥𝑋) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
1514mpteq2dva 4153 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐵)) = (𝑥𝑋 ↦ (𝐴 · (1 / 𝐵))))
168ralrimiva 2583 . . . . . 6 (𝜑 → ∀𝑥𝑋 𝐵 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0})
17 eqidd 2210 . . . . . 6 (𝜑 → (𝑥𝑋𝐵) = (𝑥𝑋𝐵))
18 eqidd 2210 . . . . . 6 (𝜑 → (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) = (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)))
1916, 17, 18fmptcos 5776 . . . . 5 (𝜑 → ((𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∘ (𝑥𝑋𝐵)) = (𝑥𝑋𝐵 / 𝑧(1 / 𝑧)))
20 csbov2g 6016 . . . . . . . 8 (𝐵 ∈ ℂ → 𝐵 / 𝑧(1 / 𝑧) = (1 / 𝐵 / 𝑧𝑧))
2112, 20syl 14 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵 / 𝑧(1 / 𝑧) = (1 / 𝐵 / 𝑧𝑧))
22 csbvarg 3132 . . . . . . . . 9 (𝐵 ∈ ℂ → 𝐵 / 𝑧𝑧 = 𝐵)
2312, 22syl 14 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵 / 𝑧𝑧 = 𝐵)
2423oveq2d 5990 . . . . . . 7 ((𝜑𝑥𝑋) → (1 / 𝐵 / 𝑧𝑧) = (1 / 𝐵))
2521, 24eqtrd 2242 . . . . . 6 ((𝜑𝑥𝑋) → 𝐵 / 𝑧(1 / 𝑧) = (1 / 𝐵))
2625mpteq2dva 4153 . . . . 5 (𝜑 → (𝑥𝑋𝐵 / 𝑧(1 / 𝑧)) = (𝑥𝑋 ↦ (1 / 𝐵)))
2719, 26eqtr2d 2243 . . . 4 (𝜑 → (𝑥𝑋 ↦ (1 / 𝐵)) = ((𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∘ (𝑥𝑋𝐵)))
28 ax-1cn 8060 . . . . . 6 1 ∈ ℂ
29 eqid 2209 . . . . . . 7 (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) = (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧))
3029cdivcncfap 15243 . . . . . 6 (1 ∈ ℂ → (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
3128, 30mp1i 10 . . . . 5 (𝜑 → (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
325, 31cncfco 15230 . . . 4 (𝜑 → ((𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∘ (𝑥𝑋𝐵)) ∈ (𝑋cn→ℂ))
3327, 32eqeltrd 2286 . . 3 (𝜑 → (𝑥𝑋 ↦ (1 / 𝐵)) ∈ (𝑋cn→ℂ))
341, 33mulcncf 15247 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴 · (1 / 𝐵))) ∈ (𝑋cn→ℂ))
3515, 34eqeltrd 2286 1 (𝜑 → (𝑥𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  {crab 2492  csb 3104   class class class wbr 4062  cmpt 4124  ccom 4700  wf 5290  (class class class)co 5974  cc 7965  0cc0 7967  1c1 7968   · cmul 7972   # cap 8696   / cdiv 8787  cnccncf 15209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-map 6767  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-rp 9818  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-cncf 15210
This theorem is referenced by:  maxcncf  15254  mincncf  15255
  Copyright terms: Public domain W3C validator