| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divcncfap | GIF version | ||
| Description: The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| divcncf.1 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
| divcncfap.2 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0})) |
| Ref | Expression |
|---|---|
| divcncfap | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcncf.1 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) | |
| 2 | cncff 15216 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) | |
| 3 | 1, 2 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
| 4 | 3 | fvmptelcdm 5761 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| 5 | divcncfap.2 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0})) | |
| 6 | cncff 15216 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶{𝑦 ∈ ℂ ∣ 𝑦 # 0}) | |
| 7 | 5, 6 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶{𝑦 ∈ ℂ ∣ 𝑦 # 0}) |
| 8 | 7 | fvmptelcdm 5761 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) |
| 9 | breq1 4065 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝑦 # 0 ↔ 𝐵 # 0)) | |
| 10 | 9 | elrab 2939 | . . . . . 6 ⊢ (𝐵 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) |
| 11 | 8, 10 | sylib 122 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 ∈ ℂ ∧ 𝐵 # 0)) |
| 12 | 11 | simpld 112 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| 13 | 11 | simprd 114 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 # 0) |
| 14 | 4, 12, 13 | divrecapd 8908 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
| 15 | 14 | mpteq2dva 4153 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐵)))) |
| 16 | 8 | ralrimiva 2583 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) |
| 17 | eqidd 2210 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 18 | eqidd 2210 | . . . . . 6 ⊢ (𝜑 → (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) = (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧))) | |
| 19 | 16, 17, 18 | fmptcos 5776 | . . . . 5 ⊢ (𝜑 → ((𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵)) = (𝑥 ∈ 𝑋 ↦ ⦋𝐵 / 𝑧⦌(1 / 𝑧))) |
| 20 | csbov2g 6016 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑧⦌(1 / 𝑧) = (1 / ⦋𝐵 / 𝑧⦌𝑧)) | |
| 21 | 12, 20 | syl 14 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑧⦌(1 / 𝑧) = (1 / ⦋𝐵 / 𝑧⦌𝑧)) |
| 22 | csbvarg 3132 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑧⦌𝑧 = 𝐵) | |
| 23 | 12, 22 | syl 14 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑧⦌𝑧 = 𝐵) |
| 24 | 23 | oveq2d 5990 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 / ⦋𝐵 / 𝑧⦌𝑧) = (1 / 𝐵)) |
| 25 | 21, 24 | eqtrd 2242 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑧⦌(1 / 𝑧) = (1 / 𝐵)) |
| 26 | 25 | mpteq2dva 4153 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ⦋𝐵 / 𝑧⦌(1 / 𝑧)) = (𝑥 ∈ 𝑋 ↦ (1 / 𝐵))) |
| 27 | 19, 26 | eqtr2d 2243 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (1 / 𝐵)) = ((𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵))) |
| 28 | ax-1cn 8060 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 29 | eqid 2209 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) = (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) | |
| 30 | 29 | cdivcncfap 15243 | . . . . . 6 ⊢ (1 ∈ ℂ → (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ)) |
| 31 | 28, 30 | mp1i 10 | . . . . 5 ⊢ (𝜑 → (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ)) |
| 32 | 5, 31 | cncfco 15230 | . . . 4 ⊢ (𝜑 → ((𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵)) ∈ (𝑋–cn→ℂ)) |
| 33 | 27, 32 | eqeltrd 2286 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (1 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
| 34 | 1, 33 | mulcncf 15247 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐵))) ∈ (𝑋–cn→ℂ)) |
| 35 | 15, 34 | eqeltrd 2286 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 {crab 2492 ⦋csb 3104 class class class wbr 4062 ↦ cmpt 4124 ∘ ccom 4700 ⟶wf 5290 (class class class)co 5974 ℂcc 7965 0cc0 7967 1c1 7968 · cmul 7972 # cap 8696 / cdiv 8787 –cn→ccncf 15209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-map 6767 df-sup 7119 df-inf 7120 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-rp 9818 df-seqfrec 10637 df-exp 10728 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-cncf 15210 |
| This theorem is referenced by: maxcncf 15254 mincncf 15255 |
| Copyright terms: Public domain | W3C validator |