| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divcncfap | GIF version | ||
| Description: The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| divcncf.1 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
| divcncfap.2 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0})) |
| Ref | Expression |
|---|---|
| divcncfap | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcncf.1 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) | |
| 2 | cncff 15093 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) | |
| 3 | 1, 2 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
| 4 | 3 | fvmptelcdm 5740 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| 5 | divcncfap.2 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0})) | |
| 6 | cncff 15093 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶{𝑦 ∈ ℂ ∣ 𝑦 # 0}) | |
| 7 | 5, 6 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶{𝑦 ∈ ℂ ∣ 𝑦 # 0}) |
| 8 | 7 | fvmptelcdm 5740 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) |
| 9 | breq1 4050 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝑦 # 0 ↔ 𝐵 # 0)) | |
| 10 | 9 | elrab 2930 | . . . . . 6 ⊢ (𝐵 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) |
| 11 | 8, 10 | sylib 122 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 ∈ ℂ ∧ 𝐵 # 0)) |
| 12 | 11 | simpld 112 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| 13 | 11 | simprd 114 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 # 0) |
| 14 | 4, 12, 13 | divrecapd 8873 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
| 15 | 14 | mpteq2dva 4138 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐵)))) |
| 16 | 8 | ralrimiva 2580 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) |
| 17 | eqidd 2207 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 18 | eqidd 2207 | . . . . . 6 ⊢ (𝜑 → (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) = (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧))) | |
| 19 | 16, 17, 18 | fmptcos 5755 | . . . . 5 ⊢ (𝜑 → ((𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵)) = (𝑥 ∈ 𝑋 ↦ ⦋𝐵 / 𝑧⦌(1 / 𝑧))) |
| 20 | csbov2g 5993 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑧⦌(1 / 𝑧) = (1 / ⦋𝐵 / 𝑧⦌𝑧)) | |
| 21 | 12, 20 | syl 14 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑧⦌(1 / 𝑧) = (1 / ⦋𝐵 / 𝑧⦌𝑧)) |
| 22 | csbvarg 3122 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑧⦌𝑧 = 𝐵) | |
| 23 | 12, 22 | syl 14 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑧⦌𝑧 = 𝐵) |
| 24 | 23 | oveq2d 5967 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 / ⦋𝐵 / 𝑧⦌𝑧) = (1 / 𝐵)) |
| 25 | 21, 24 | eqtrd 2239 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑧⦌(1 / 𝑧) = (1 / 𝐵)) |
| 26 | 25 | mpteq2dva 4138 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ⦋𝐵 / 𝑧⦌(1 / 𝑧)) = (𝑥 ∈ 𝑋 ↦ (1 / 𝐵))) |
| 27 | 19, 26 | eqtr2d 2240 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (1 / 𝐵)) = ((𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵))) |
| 28 | ax-1cn 8025 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 29 | eqid 2206 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) = (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) | |
| 30 | 29 | cdivcncfap 15120 | . . . . . 6 ⊢ (1 ∈ ℂ → (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ)) |
| 31 | 28, 30 | mp1i 10 | . . . . 5 ⊢ (𝜑 → (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ)) |
| 32 | 5, 31 | cncfco 15107 | . . . 4 ⊢ (𝜑 → ((𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵)) ∈ (𝑋–cn→ℂ)) |
| 33 | 27, 32 | eqeltrd 2283 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (1 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
| 34 | 1, 33 | mulcncf 15124 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐵))) ∈ (𝑋–cn→ℂ)) |
| 35 | 15, 34 | eqeltrd 2283 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {crab 2489 ⦋csb 3094 class class class wbr 4047 ↦ cmpt 4109 ∘ ccom 4683 ⟶wf 5272 (class class class)co 5951 ℂcc 7930 0cc0 7932 1c1 7933 · cmul 7937 # cap 8661 / cdiv 8752 –cn→ccncf 15086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-map 6744 df-sup 7093 df-inf 7094 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-rp 9783 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-cncf 15087 |
| This theorem is referenced by: maxcncf 15131 mincncf 15132 |
| Copyright terms: Public domain | W3C validator |