![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > divcncfap | GIF version |
Description: The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
divcncf.1 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
divcncfap.2 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0})) |
Ref | Expression |
---|---|
divcncfap | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divcncf.1 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) | |
2 | cncff 14756 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) | |
3 | 1, 2 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
4 | 3 | fvmptelcdm 5712 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
5 | divcncfap.2 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0})) | |
6 | cncff 14756 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→{𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶{𝑦 ∈ ℂ ∣ 𝑦 # 0}) | |
7 | 5, 6 | syl 14 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶{𝑦 ∈ ℂ ∣ 𝑦 # 0}) |
8 | 7 | fvmptelcdm 5712 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) |
9 | breq1 4033 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝑦 # 0 ↔ 𝐵 # 0)) | |
10 | 9 | elrab 2917 | . . . . . 6 ⊢ (𝐵 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) |
11 | 8, 10 | sylib 122 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐵 ∈ ℂ ∧ 𝐵 # 0)) |
12 | 11 | simpld 112 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
13 | 11 | simprd 114 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 # 0) |
14 | 4, 12, 13 | divrecapd 8814 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
15 | 14 | mpteq2dva 4120 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐵)))) |
16 | 8 | ralrimiva 2567 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) |
17 | eqidd 2194 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
18 | eqidd 2194 | . . . . . 6 ⊢ (𝜑 → (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) = (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧))) | |
19 | 16, 17, 18 | fmptcos 5727 | . . . . 5 ⊢ (𝜑 → ((𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵)) = (𝑥 ∈ 𝑋 ↦ ⦋𝐵 / 𝑧⦌(1 / 𝑧))) |
20 | csbov2g 5960 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑧⦌(1 / 𝑧) = (1 / ⦋𝐵 / 𝑧⦌𝑧)) | |
21 | 12, 20 | syl 14 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑧⦌(1 / 𝑧) = (1 / ⦋𝐵 / 𝑧⦌𝑧)) |
22 | csbvarg 3109 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℂ → ⦋𝐵 / 𝑧⦌𝑧 = 𝐵) | |
23 | 12, 22 | syl 14 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑧⦌𝑧 = 𝐵) |
24 | 23 | oveq2d 5935 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 / ⦋𝐵 / 𝑧⦌𝑧) = (1 / 𝐵)) |
25 | 21, 24 | eqtrd 2226 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ⦋𝐵 / 𝑧⦌(1 / 𝑧) = (1 / 𝐵)) |
26 | 25 | mpteq2dva 4120 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ⦋𝐵 / 𝑧⦌(1 / 𝑧)) = (𝑥 ∈ 𝑋 ↦ (1 / 𝐵))) |
27 | 19, 26 | eqtr2d 2227 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (1 / 𝐵)) = ((𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵))) |
28 | ax-1cn 7967 | . . . . . 6 ⊢ 1 ∈ ℂ | |
29 | eqid 2193 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) = (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) | |
30 | 29 | cdivcncfap 14783 | . . . . . 6 ⊢ (1 ∈ ℂ → (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ)) |
31 | 28, 30 | mp1i 10 | . . . . 5 ⊢ (𝜑 → (𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ)) |
32 | 5, 31 | cncfco 14770 | . . . 4 ⊢ (𝜑 → ((𝑧 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑧)) ∘ (𝑥 ∈ 𝑋 ↦ 𝐵)) ∈ (𝑋–cn→ℂ)) |
33 | 27, 32 | eqeltrd 2270 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (1 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
34 | 1, 33 | mulcncf 14787 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · (1 / 𝐵))) ∈ (𝑋–cn→ℂ)) |
35 | 15, 34 | eqeltrd 2270 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵)) ∈ (𝑋–cn→ℂ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 {crab 2476 ⦋csb 3081 class class class wbr 4030 ↦ cmpt 4091 ∘ ccom 4664 ⟶wf 5251 (class class class)co 5919 ℂcc 7872 0cc0 7874 1c1 7875 · cmul 7879 # cap 8602 / cdiv 8693 –cn→ccncf 14749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-map 6706 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-rp 9723 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-cncf 14750 |
This theorem is referenced by: maxcncf 14794 mincncf 14795 |
Copyright terms: Public domain | W3C validator |