![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hovergt0 | GIF version |
Description: The hover function evaluated at a point greater than zero. (Contributed by Jim Kingdon, 22-Jul-2025.) |
Ref | Expression |
---|---|
hover.f | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) |
Ref | Expression |
---|---|
hovergt0 | ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 0 ≤ (𝐹‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 8022 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 0 ∈ ℝ) | |
2 | simpl 109 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ∈ ℝ) | |
3 | peano2rem 8288 | . . . . 5 ⊢ (𝐶 ∈ ℝ → (𝐶 − 1) ∈ ℝ) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐶 − 1) ∈ ℝ) |
5 | maxle1 11358 | . . . 4 ⊢ ((0 ∈ ℝ ∧ (𝐶 − 1) ∈ ℝ) → 0 ≤ sup({0, (𝐶 − 1)}, ℝ, < )) | |
6 | 1, 4, 5 | syl2anc 411 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 0 ≤ sup({0, (𝐶 − 1)}, ℝ, < )) |
7 | mincom 11375 | . . . . . 6 ⊢ inf({𝐶, 0}, ℝ, < ) = inf({0, 𝐶}, ℝ, < ) | |
8 | simpr 110 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 0 < 𝐶) | |
9 | 1, 2, 8 | ltled 8140 | . . . . . . 7 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 0 ≤ 𝐶) |
10 | 0re 8021 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
11 | mingeb 11388 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ 𝐶 ↔ inf({0, 𝐶}, ℝ, < ) = 0)) | |
12 | 10, 2, 11 | sylancr 414 | . . . . . . 7 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (0 ≤ 𝐶 ↔ inf({0, 𝐶}, ℝ, < ) = 0)) |
13 | 9, 12 | mpbid 147 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → inf({0, 𝐶}, ℝ, < ) = 0) |
14 | 7, 13 | eqtrid 2238 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → inf({𝐶, 0}, ℝ, < ) = 0) |
15 | 14 | preq1d 3702 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → {inf({𝐶, 0}, ℝ, < ), (𝐶 − 1)} = {0, (𝐶 − 1)}) |
16 | 15 | supeq1d 7048 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → sup({inf({𝐶, 0}, ℝ, < ), (𝐶 − 1)}, ℝ, < ) = sup({0, (𝐶 − 1)}, ℝ, < )) |
17 | 6, 16 | breqtrrd 4058 | . 2 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 0 ≤ sup({inf({𝐶, 0}, ℝ, < ), (𝐶 − 1)}, ℝ, < )) |
18 | hover.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) | |
19 | preq1 3696 | . . . . . 6 ⊢ (𝑥 = 𝐶 → {𝑥, 0} = {𝐶, 0}) | |
20 | 19 | infeq1d 7073 | . . . . 5 ⊢ (𝑥 = 𝐶 → inf({𝑥, 0}, ℝ, < ) = inf({𝐶, 0}, ℝ, < )) |
21 | oveq1 5926 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 − 1) = (𝐶 − 1)) | |
22 | 20, 21 | preq12d 3704 | . . . 4 ⊢ (𝑥 = 𝐶 → {inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)} = {inf({𝐶, 0}, ℝ, < ), (𝐶 − 1)}) |
23 | 22 | supeq1d 7048 | . . 3 ⊢ (𝑥 = 𝐶 → sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < ) = sup({inf({𝐶, 0}, ℝ, < ), (𝐶 − 1)}, ℝ, < )) |
24 | mincl 11377 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → inf({𝐶, 0}, ℝ, < ) ∈ ℝ) | |
25 | 2, 1, 24 | syl2anc 411 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → inf({𝐶, 0}, ℝ, < ) ∈ ℝ) |
26 | maxcl 11357 | . . . 4 ⊢ ((inf({𝐶, 0}, ℝ, < ) ∈ ℝ ∧ (𝐶 − 1) ∈ ℝ) → sup({inf({𝐶, 0}, ℝ, < ), (𝐶 − 1)}, ℝ, < ) ∈ ℝ) | |
27 | 25, 4, 26 | syl2anc 411 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → sup({inf({𝐶, 0}, ℝ, < ), (𝐶 − 1)}, ℝ, < ) ∈ ℝ) |
28 | 18, 23, 2, 27 | fvmptd3 5652 | . 2 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐹‘𝐶) = sup({inf({𝐶, 0}, ℝ, < ), (𝐶 − 1)}, ℝ, < )) |
29 | 17, 28 | breqtrrd 4058 | 1 ⊢ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 0 ≤ (𝐹‘𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {cpr 3620 class class class wbr 4030 ↦ cmpt 4091 ‘cfv 5255 (class class class)co 5919 supcsup 7043 infcinf 7044 ℝcr 7873 0cc0 7874 1c1 7875 < clt 8056 ≤ cle 8057 − cmin 8192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-rp 9723 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 |
This theorem is referenced by: ivthdichlem 14830 |
Copyright terms: Public domain | W3C validator |