| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsquad | GIF version | ||
| Description: The Law of Quadratic Reciprocity, see also theorem 9.8 in [ApostolNT] p. 185. If 𝑃 and 𝑄 are distinct odd primes, then the product of the Legendre symbols (𝑃 /L 𝑄) and (𝑄 /L 𝑃) is the parity of ((𝑃 − 1) / 2) · ((𝑄 − 1) / 2). This uses Eisenstein's proof, which also has a nice geometric interpretation - see https://en.wikipedia.org/wiki/Proofs_of_quadratic_reciprocity. This is Metamath 100 proof #7. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| Ref | Expression |
|---|---|
| lgsquad | ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(((𝑃 − 1) / 2) · ((𝑄 − 1) / 2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 | . 2 ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | simp2 1000 | . 2 ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ (ℙ ∖ {2})) | |
| 3 | simp3 1001 | . 2 ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) | |
| 4 | eqid 2196 | . 2 ⊢ ((𝑃 − 1) / 2) = ((𝑃 − 1) / 2) | |
| 5 | eqid 2196 | . 2 ⊢ ((𝑄 − 1) / 2) = ((𝑄 − 1) / 2) | |
| 6 | eleq1w 2257 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↔ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) | |
| 7 | eleq1w 2257 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ (1...((𝑄 − 1) / 2)) ↔ 𝑤 ∈ (1...((𝑄 − 1) / 2)))) | |
| 8 | 6, 7 | bi2anan9 606 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑦 ∈ (1...((𝑄 − 1) / 2))) ↔ (𝑧 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑤 ∈ (1...((𝑄 − 1) / 2))))) |
| 9 | oveq1 5932 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 · 𝑃) = (𝑤 · 𝑃)) | |
| 10 | oveq1 5932 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 · 𝑄) = (𝑧 · 𝑄)) | |
| 11 | 9, 10 | breqan12rd 4051 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑦 · 𝑃) < (𝑥 · 𝑄) ↔ (𝑤 · 𝑃) < (𝑧 · 𝑄))) |
| 12 | 8, 11 | anbi12d 473 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (((𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑦 ∈ (1...((𝑄 − 1) / 2))) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ↔ ((𝑧 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑤 ∈ (1...((𝑄 − 1) / 2))) ∧ (𝑤 · 𝑃) < (𝑧 · 𝑄)))) |
| 13 | 12 | cbvopabv 4106 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑦 ∈ (1...((𝑄 − 1) / 2))) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} = {〈𝑧, 𝑤〉 ∣ ((𝑧 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑤 ∈ (1...((𝑄 − 1) / 2))) ∧ (𝑤 · 𝑃) < (𝑧 · 𝑄))} |
| 14 | 1, 2, 3, 4, 5, 13 | lgsquadlem3 15406 | 1 ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(((𝑃 − 1) / 2) · ((𝑄 − 1) / 2)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∖ cdif 3154 {csn 3623 class class class wbr 4034 {copab 4094 (class class class)co 5925 1c1 7899 · cmul 7903 < clt 8080 − cmin 8216 -cneg 8217 / cdiv 8718 2c2 9060 ...cfz 10102 ↑cexp 10649 ℙcprime 12302 /L clgs 15324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 ax-caucvg 8018 ax-addf 8020 ax-mulf 8021 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6207 df-2nd 6208 df-tpos 6312 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-2o 6484 df-oadd 6487 df-er 6601 df-ec 6603 df-qs 6607 df-map 6718 df-en 6809 df-dom 6810 df-fin 6811 df-sup 7059 df-inf 7060 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 df-9 9075 df-n0 9269 df-z 9346 df-dec 9477 df-uz 9621 df-q 9713 df-rp 9748 df-fz 10103 df-fzo 10237 df-fl 10379 df-mod 10434 df-seqfrec 10559 df-exp 10650 df-ihash 10887 df-cj 11026 df-re 11027 df-im 11028 df-rsqrt 11182 df-abs 11183 df-clim 11463 df-sumdc 11538 df-proddc 11735 df-dvds 11972 df-gcd 12148 df-prm 12303 df-phi 12406 df-pc 12481 df-struct 12707 df-ndx 12708 df-slot 12709 df-base 12711 df-sets 12712 df-iress 12713 df-plusg 12795 df-mulr 12796 df-starv 12797 df-sca 12798 df-vsca 12799 df-ip 12800 df-tset 12801 df-ple 12802 df-ds 12804 df-unif 12805 df-0g 12962 df-igsum 12963 df-topgen 12964 df-iimas 13006 df-qus 13007 df-mgm 13060 df-sgrp 13106 df-mnd 13121 df-mhm 13163 df-submnd 13164 df-grp 13207 df-minusg 13208 df-sbg 13209 df-mulg 13328 df-subg 13378 df-nsg 13379 df-eqg 13380 df-ghm 13449 df-cmn 13494 df-abl 13495 df-mgp 13555 df-rng 13567 df-ur 13594 df-srg 13598 df-ring 13632 df-cring 13633 df-oppr 13702 df-dvdsr 13723 df-unit 13724 df-invr 13755 df-dvr 13766 df-rhm 13786 df-nzr 13814 df-subrg 13853 df-domn 13893 df-idom 13894 df-lmod 13923 df-lssm 13987 df-lsp 14021 df-sra 14069 df-rgmod 14070 df-lidl 14103 df-rsp 14104 df-2idl 14134 df-bl 14180 df-mopn 14181 df-fg 14183 df-metu 14184 df-cnfld 14191 df-zring 14225 df-zrh 14248 df-zn 14250 df-lgs 15325 |
| This theorem is referenced by: lgsquad2 15410 |
| Copyright terms: Public domain | W3C validator |