| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsquad | GIF version | ||
| Description: The Law of Quadratic Reciprocity, see also theorem 9.8 in [ApostolNT] p. 185. If 𝑃 and 𝑄 are distinct odd primes, then the product of the Legendre symbols (𝑃 /L 𝑄) and (𝑄 /L 𝑃) is the parity of ((𝑃 − 1) / 2) · ((𝑄 − 1) / 2). This uses Eisenstein's proof, which also has a nice geometric interpretation - see https://en.wikipedia.org/wiki/Proofs_of_quadratic_reciprocity. This is Metamath 100 proof #7. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| Ref | Expression |
|---|---|
| lgsquad | ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(((𝑃 − 1) / 2) · ((𝑄 − 1) / 2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 | . 2 ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | simp2 1022 | . 2 ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → 𝑄 ∈ (ℙ ∖ {2})) | |
| 3 | simp3 1023 | . 2 ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) | |
| 4 | eqid 2229 | . 2 ⊢ ((𝑃 − 1) / 2) = ((𝑃 − 1) / 2) | |
| 5 | eqid 2229 | . 2 ⊢ ((𝑄 − 1) / 2) = ((𝑄 − 1) / 2) | |
| 6 | eleq1w 2290 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↔ 𝑧 ∈ (1...((𝑃 − 1) / 2)))) | |
| 7 | eleq1w 2290 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 ∈ (1...((𝑄 − 1) / 2)) ↔ 𝑤 ∈ (1...((𝑄 − 1) / 2)))) | |
| 8 | 6, 7 | bi2anan9 608 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑦 ∈ (1...((𝑄 − 1) / 2))) ↔ (𝑧 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑤 ∈ (1...((𝑄 − 1) / 2))))) |
| 9 | oveq1 6001 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑦 · 𝑃) = (𝑤 · 𝑃)) | |
| 10 | oveq1 6001 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 · 𝑄) = (𝑧 · 𝑄)) | |
| 11 | 9, 10 | breqan12rd 4099 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑦 · 𝑃) < (𝑥 · 𝑄) ↔ (𝑤 · 𝑃) < (𝑧 · 𝑄))) |
| 12 | 8, 11 | anbi12d 473 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (((𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑦 ∈ (1...((𝑄 − 1) / 2))) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ↔ ((𝑧 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑤 ∈ (1...((𝑄 − 1) / 2))) ∧ (𝑤 · 𝑃) < (𝑧 · 𝑄)))) |
| 13 | 12 | cbvopabv 4155 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑦 ∈ (1...((𝑄 − 1) / 2))) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} = {〈𝑧, 𝑤〉 ∣ ((𝑧 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑤 ∈ (1...((𝑄 − 1) / 2))) ∧ (𝑤 · 𝑃) < (𝑧 · 𝑄))} |
| 14 | 1, 2, 3, 4, 5, 13 | lgsquadlem3 15743 | 1 ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(((𝑃 − 1) / 2) · ((𝑄 − 1) / 2)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∖ cdif 3194 {csn 3666 class class class wbr 4082 {copab 4143 (class class class)co 5994 1c1 7988 · cmul 7992 < clt 8169 − cmin 8305 -cneg 8306 / cdiv 8807 2c2 9149 ...cfz 10192 ↑cexp 10747 ℙcprime 12615 /L clgs 15661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 ax-addf 8109 ax-mulf 8110 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-disj 4059 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-of 6208 df-1st 6276 df-2nd 6277 df-tpos 6381 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-2o 6553 df-oadd 6556 df-er 6670 df-ec 6672 df-qs 6676 df-map 6787 df-en 6878 df-dom 6879 df-fin 6880 df-sup 7139 df-inf 7140 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-z 9435 df-dec 9567 df-uz 9711 df-q 9803 df-rp 9838 df-fz 10193 df-fzo 10327 df-fl 10477 df-mod 10532 df-seqfrec 10657 df-exp 10748 df-ihash 10985 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-clim 11776 df-sumdc 11851 df-proddc 12048 df-dvds 12285 df-gcd 12461 df-prm 12616 df-phi 12719 df-pc 12794 df-struct 13020 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-iress 13026 df-plusg 13109 df-mulr 13110 df-starv 13111 df-sca 13112 df-vsca 13113 df-ip 13114 df-tset 13115 df-ple 13116 df-ds 13118 df-unif 13119 df-0g 13277 df-igsum 13278 df-topgen 13279 df-iimas 13321 df-qus 13322 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-mhm 13478 df-submnd 13479 df-grp 13522 df-minusg 13523 df-sbg 13524 df-mulg 13643 df-subg 13693 df-nsg 13694 df-eqg 13695 df-ghm 13764 df-cmn 13809 df-abl 13810 df-mgp 13870 df-rng 13882 df-ur 13909 df-srg 13913 df-ring 13947 df-cring 13948 df-oppr 14017 df-dvdsr 14038 df-unit 14039 df-invr 14070 df-dvr 14081 df-rhm 14101 df-nzr 14129 df-subrg 14168 df-domn 14208 df-idom 14209 df-lmod 14238 df-lssm 14302 df-lsp 14336 df-sra 14384 df-rgmod 14385 df-lidl 14418 df-rsp 14419 df-2idl 14449 df-bl 14495 df-mopn 14496 df-fg 14498 df-metu 14499 df-cnfld 14506 df-zring 14540 df-zrh 14563 df-zn 14565 df-lgs 15662 |
| This theorem is referenced by: lgsquad2 15747 |
| Copyright terms: Public domain | W3C validator |