![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdsfi | GIF version |
Description: A natural number has finitely many divisors. (Contributed by Jim Kingdon, 9-Oct-2025.) |
Ref | Expression |
---|---|
dvdsfi | ⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1zzd 9350 | . . 3 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℤ) | |
2 | nnz 9342 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | 1, 2 | fzfigd 10508 | . 2 ⊢ (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin) |
4 | dvdsssfz1 12000 | . 2 ⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ (1...𝑁)) | |
5 | elfznn 10126 | . . . . 5 ⊢ (𝑗 ∈ (1...𝑁) → 𝑗 ∈ ℕ) | |
6 | dvdsdc 11947 | . . . . 5 ⊢ ((𝑗 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑗 ∥ 𝑁) | |
7 | 5, 2, 6 | syl2anr 290 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...𝑁)) → DECID 𝑗 ∥ 𝑁) |
8 | 5 | biantrurd 305 | . . . . . . 7 ⊢ (𝑗 ∈ (1...𝑁) → (𝑗 ∥ 𝑁 ↔ (𝑗 ∈ ℕ ∧ 𝑗 ∥ 𝑁))) |
9 | breq1 4036 | . . . . . . . 8 ⊢ (𝑥 = 𝑗 → (𝑥 ∥ 𝑁 ↔ 𝑗 ∥ 𝑁)) | |
10 | 9 | elrab 2920 | . . . . . . 7 ⊢ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↔ (𝑗 ∈ ℕ ∧ 𝑗 ∥ 𝑁)) |
11 | 8, 10 | bitr4di 198 | . . . . . 6 ⊢ (𝑗 ∈ (1...𝑁) → (𝑗 ∥ 𝑁 ↔ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) |
12 | 11 | dcbid 839 | . . . . 5 ⊢ (𝑗 ∈ (1...𝑁) → (DECID 𝑗 ∥ 𝑁 ↔ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) |
13 | 12 | adantl 277 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...𝑁)) → (DECID 𝑗 ∥ 𝑁 ↔ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) |
14 | 7, 13 | mpbid 147 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...𝑁)) → DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
15 | 14 | ralrimiva 2570 | . 2 ⊢ (𝑁 ∈ ℕ → ∀𝑗 ∈ (1...𝑁)DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
16 | ssfidc 6996 | . 2 ⊢ (((1...𝑁) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ (1...𝑁) ∧ ∀𝑗 ∈ (1...𝑁)DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∈ Fin) | |
17 | 3, 4, 15, 16 | syl3anc 1249 | 1 ⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 ∈ wcel 2167 ∀wral 2475 {crab 2479 ⊆ wss 3157 class class class wbr 4033 (class class class)co 5922 Fincfn 6799 1c1 7878 ℕcn 8987 ℤcz 9323 ...cfz 10080 ∥ cdvds 11936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulrcl 7976 ax-addcom 7977 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-1rid 7984 ax-0id 7985 ax-rnegex 7986 ax-precex 7987 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-apti 7992 ax-pre-ltadd 7993 ax-pre-mulgt0 7994 ax-pre-mulext 7995 ax-arch 7996 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-1o 6474 df-er 6592 df-en 6800 df-fin 6802 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-reap 8599 df-ap 8606 df-div 8697 df-inn 8988 df-n0 9247 df-z 9324 df-uz 9599 df-q 9691 df-rp 9726 df-fz 10081 df-fl 10345 df-mod 10400 df-dvds 11937 |
This theorem is referenced by: phisum 12385 sgmval 15191 0sgm 15193 sgmf 15194 sgmnncl 15196 fsumdvdsmul 15199 |
Copyright terms: Public domain | W3C validator |