| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsfi | GIF version | ||
| Description: A natural number has finitely many divisors. (Contributed by Jim Kingdon, 9-Oct-2025.) |
| Ref | Expression |
|---|---|
| dvdsfi | ⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1zzd 9461 | . . 3 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℤ) | |
| 2 | nnz 9453 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 3 | 1, 2 | fzfigd 10640 | . 2 ⊢ (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin) |
| 4 | dvdsssfz1 12349 | . 2 ⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ (1...𝑁)) | |
| 5 | elfznn 10238 | . . . . 5 ⊢ (𝑗 ∈ (1...𝑁) → 𝑗 ∈ ℕ) | |
| 6 | dvdsdc 12295 | . . . . 5 ⊢ ((𝑗 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑗 ∥ 𝑁) | |
| 7 | 5, 2, 6 | syl2anr 290 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...𝑁)) → DECID 𝑗 ∥ 𝑁) |
| 8 | 5 | biantrurd 305 | . . . . . . 7 ⊢ (𝑗 ∈ (1...𝑁) → (𝑗 ∥ 𝑁 ↔ (𝑗 ∈ ℕ ∧ 𝑗 ∥ 𝑁))) |
| 9 | breq1 4085 | . . . . . . . 8 ⊢ (𝑥 = 𝑗 → (𝑥 ∥ 𝑁 ↔ 𝑗 ∥ 𝑁)) | |
| 10 | 9 | elrab 2959 | . . . . . . 7 ⊢ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↔ (𝑗 ∈ ℕ ∧ 𝑗 ∥ 𝑁)) |
| 11 | 8, 10 | bitr4di 198 | . . . . . 6 ⊢ (𝑗 ∈ (1...𝑁) → (𝑗 ∥ 𝑁 ↔ 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) |
| 12 | 11 | dcbid 843 | . . . . 5 ⊢ (𝑗 ∈ (1...𝑁) → (DECID 𝑗 ∥ 𝑁 ↔ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) |
| 13 | 12 | adantl 277 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...𝑁)) → (DECID 𝑗 ∥ 𝑁 ↔ DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁})) |
| 14 | 7, 13 | mpbid 147 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...𝑁)) → DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 15 | 14 | ralrimiva 2603 | . 2 ⊢ (𝑁 ∈ ℕ → ∀𝑗 ∈ (1...𝑁)DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 16 | ssfidc 7087 | . 2 ⊢ (((1...𝑁) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ (1...𝑁) ∧ ∀𝑗 ∈ (1...𝑁)DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∈ Fin) | |
| 17 | 3, 4, 15, 16 | syl3anc 1271 | 1 ⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 839 ∈ wcel 2200 ∀wral 2508 {crab 2512 ⊆ wss 3197 class class class wbr 4082 (class class class)co 5994 Fincfn 6877 1c1 7988 ℕcn 9098 ℤcz 9434 ...cfz 10192 ∥ cdvds 12284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-1o 6552 df-er 6670 df-en 6878 df-fin 6880 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-fz 10193 df-fl 10477 df-mod 10532 df-dvds 12285 |
| This theorem is referenced by: phisum 12749 sgmval 15642 0sgm 15644 sgmf 15645 sgmnncl 15647 fsumdvdsmul 15650 perfectlem2 15659 |
| Copyright terms: Public domain | W3C validator |