ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hoverb GIF version

Theorem hoverb 14884
Description: A point at which the hover function is greater than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.)
Hypothesis
Ref Expression
hover.f 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < ))
Assertion
Ref Expression
hoverb (𝑍 ∈ ℝ → 𝑍 < (𝐹‘(𝑍 + 2)))
Distinct variable group:   𝑥,𝑍
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem hoverb
StepHypRef Expression
1 id 19 . 2 (𝑍 ∈ ℝ → 𝑍 ∈ ℝ)
2 peano2re 8162 . 2 (𝑍 ∈ ℝ → (𝑍 + 1) ∈ ℝ)
3 hover.f . . . 4 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < ))
4 preq1 3699 . . . . . . 7 (𝑥 = (𝑍 + 2) → {𝑥, 0} = {(𝑍 + 2), 0})
54infeq1d 7078 . . . . . 6 (𝑥 = (𝑍 + 2) → inf({𝑥, 0}, ℝ, < ) = inf({(𝑍 + 2), 0}, ℝ, < ))
6 oveq1 5929 . . . . . 6 (𝑥 = (𝑍 + 2) → (𝑥 − 1) = ((𝑍 + 2) − 1))
75, 6preq12d 3707 . . . . 5 (𝑥 = (𝑍 + 2) → {inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)} = {inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)})
87supeq1d 7053 . . . 4 (𝑥 = (𝑍 + 2) → sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < ) = sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < ))
9 2re 9060 . . . . . 6 2 ∈ ℝ
109a1i 9 . . . . 5 (𝑍 ∈ ℝ → 2 ∈ ℝ)
111, 10readdcld 8056 . . . 4 (𝑍 ∈ ℝ → (𝑍 + 2) ∈ ℝ)
12 0red 8027 . . . . . 6 (𝑍 ∈ ℝ → 0 ∈ ℝ)
13 mincl 11396 . . . . . 6 (((𝑍 + 2) ∈ ℝ ∧ 0 ∈ ℝ) → inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ)
1411, 12, 13syl2anc 411 . . . . 5 (𝑍 ∈ ℝ → inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ)
15 peano2rem 8293 . . . . . 6 ((𝑍 + 2) ∈ ℝ → ((𝑍 + 2) − 1) ∈ ℝ)
1611, 15syl 14 . . . . 5 (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) ∈ ℝ)
17 maxcl 11375 . . . . 5 ((inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ ∧ ((𝑍 + 2) − 1) ∈ ℝ) → sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < ) ∈ ℝ)
1814, 16, 17syl2anc 411 . . . 4 (𝑍 ∈ ℝ → sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < ) ∈ ℝ)
193, 8, 11, 18fvmptd3 5655 . . 3 (𝑍 ∈ ℝ → (𝐹‘(𝑍 + 2)) = sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < ))
2019, 18eqeltrd 2273 . 2 (𝑍 ∈ ℝ → (𝐹‘(𝑍 + 2)) ∈ ℝ)
21 ltp1 8871 . 2 (𝑍 ∈ ℝ → 𝑍 < (𝑍 + 1))
22 recn 8012 . . . . 5 (𝑍 ∈ ℝ → 𝑍 ∈ ℂ)
23 2cnd 9063 . . . . 5 (𝑍 ∈ ℝ → 2 ∈ ℂ)
24 1cnd 8042 . . . . 5 (𝑍 ∈ ℝ → 1 ∈ ℂ)
2522, 23, 24addsubassd 8357 . . . 4 (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) = (𝑍 + (2 − 1)))
26 2m1e1 9108 . . . . 5 (2 − 1) = 1
2726oveq2i 5933 . . . 4 (𝑍 + (2 − 1)) = (𝑍 + 1)
2825, 27eqtrdi 2245 . . 3 (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) = (𝑍 + 1))
29 maxle2 11377 . . . . 5 ((inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ ∧ ((𝑍 + 2) − 1) ∈ ℝ) → ((𝑍 + 2) − 1) ≤ sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < ))
3014, 16, 29syl2anc 411 . . . 4 (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) ≤ sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < ))
3130, 19breqtrrd 4061 . . 3 (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) ≤ (𝐹‘(𝑍 + 2)))
3228, 31eqbrtrrd 4057 . 2 (𝑍 ∈ ℝ → (𝑍 + 1) ≤ (𝐹‘(𝑍 + 2)))
331, 2, 20, 21, 32ltletrd 8450 1 (𝑍 ∈ ℝ → 𝑍 < (𝐹‘(𝑍 + 2)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  {cpr 3623   class class class wbr 4033  cmpt 4094  cfv 5258  (class class class)co 5922  supcsup 7048  infcinf 7049  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   < clt 8061  cle 8062  cmin 8197  2c2 9041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164
This theorem is referenced by:  ivthdichlem  14887
  Copyright terms: Public domain W3C validator