| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hoverb | GIF version | ||
| Description: A point at which the hover function is greater than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| hover.f | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) |
| Ref | Expression |
|---|---|
| hoverb | ⊢ (𝑍 ∈ ℝ → 𝑍 < (𝐹‘(𝑍 + 2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝑍 ∈ ℝ → 𝑍 ∈ ℝ) | |
| 2 | peano2re 8162 | . 2 ⊢ (𝑍 ∈ ℝ → (𝑍 + 1) ∈ ℝ) | |
| 3 | hover.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) | |
| 4 | preq1 3699 | . . . . . . 7 ⊢ (𝑥 = (𝑍 + 2) → {𝑥, 0} = {(𝑍 + 2), 0}) | |
| 5 | 4 | infeq1d 7078 | . . . . . 6 ⊢ (𝑥 = (𝑍 + 2) → inf({𝑥, 0}, ℝ, < ) = inf({(𝑍 + 2), 0}, ℝ, < )) |
| 6 | oveq1 5929 | . . . . . 6 ⊢ (𝑥 = (𝑍 + 2) → (𝑥 − 1) = ((𝑍 + 2) − 1)) | |
| 7 | 5, 6 | preq12d 3707 | . . . . 5 ⊢ (𝑥 = (𝑍 + 2) → {inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)} = {inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}) |
| 8 | 7 | supeq1d 7053 | . . . 4 ⊢ (𝑥 = (𝑍 + 2) → sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < ) = sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < )) |
| 9 | 2re 9060 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 10 | 9 | a1i 9 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 2 ∈ ℝ) |
| 11 | 1, 10 | readdcld 8056 | . . . 4 ⊢ (𝑍 ∈ ℝ → (𝑍 + 2) ∈ ℝ) |
| 12 | 0red 8027 | . . . . . 6 ⊢ (𝑍 ∈ ℝ → 0 ∈ ℝ) | |
| 13 | mincl 11396 | . . . . . 6 ⊢ (((𝑍 + 2) ∈ ℝ ∧ 0 ∈ ℝ) → inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ) | |
| 14 | 11, 12, 13 | syl2anc 411 | . . . . 5 ⊢ (𝑍 ∈ ℝ → inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ) |
| 15 | peano2rem 8293 | . . . . . 6 ⊢ ((𝑍 + 2) ∈ ℝ → ((𝑍 + 2) − 1) ∈ ℝ) | |
| 16 | 11, 15 | syl 14 | . . . . 5 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) ∈ ℝ) |
| 17 | maxcl 11375 | . . . . 5 ⊢ ((inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ ∧ ((𝑍 + 2) − 1) ∈ ℝ) → sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < ) ∈ ℝ) | |
| 18 | 14, 16, 17 | syl2anc 411 | . . . 4 ⊢ (𝑍 ∈ ℝ → sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < ) ∈ ℝ) |
| 19 | 3, 8, 11, 18 | fvmptd3 5655 | . . 3 ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 + 2)) = sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < )) |
| 20 | 19, 18 | eqeltrd 2273 | . 2 ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 + 2)) ∈ ℝ) |
| 21 | ltp1 8871 | . 2 ⊢ (𝑍 ∈ ℝ → 𝑍 < (𝑍 + 1)) | |
| 22 | recn 8012 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 𝑍 ∈ ℂ) | |
| 23 | 2cnd 9063 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 2 ∈ ℂ) | |
| 24 | 1cnd 8042 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 1 ∈ ℂ) | |
| 25 | 22, 23, 24 | addsubassd 8357 | . . . 4 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) = (𝑍 + (2 − 1))) |
| 26 | 2m1e1 9108 | . . . . 5 ⊢ (2 − 1) = 1 | |
| 27 | 26 | oveq2i 5933 | . . . 4 ⊢ (𝑍 + (2 − 1)) = (𝑍 + 1) |
| 28 | 25, 27 | eqtrdi 2245 | . . 3 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) = (𝑍 + 1)) |
| 29 | maxle2 11377 | . . . . 5 ⊢ ((inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ ∧ ((𝑍 + 2) − 1) ∈ ℝ) → ((𝑍 + 2) − 1) ≤ sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < )) | |
| 30 | 14, 16, 29 | syl2anc 411 | . . . 4 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) ≤ sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < )) |
| 31 | 30, 19 | breqtrrd 4061 | . . 3 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) ≤ (𝐹‘(𝑍 + 2))) |
| 32 | 28, 31 | eqbrtrrd 4057 | . 2 ⊢ (𝑍 ∈ ℝ → (𝑍 + 1) ≤ (𝐹‘(𝑍 + 2))) |
| 33 | 1, 2, 20, 21, 32 | ltletrd 8450 | 1 ⊢ (𝑍 ∈ ℝ → 𝑍 < (𝐹‘(𝑍 + 2))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 {cpr 3623 class class class wbr 4033 ↦ cmpt 4094 ‘cfv 5258 (class class class)co 5922 supcsup 7048 infcinf 7049 ℝcr 7878 0cc0 7879 1c1 7880 + caddc 7882 < clt 8061 ≤ cle 8062 − cmin 8197 2c2 9041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 |
| This theorem is referenced by: ivthdichlem 14887 |
| Copyright terms: Public domain | W3C validator |