![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hoverb | GIF version |
Description: A point at which the hover function is greater than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.) |
Ref | Expression |
---|---|
hover.f | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) |
Ref | Expression |
---|---|
hoverb | ⊢ (𝑍 ∈ ℝ → 𝑍 < (𝐹‘(𝑍 + 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝑍 ∈ ℝ → 𝑍 ∈ ℝ) | |
2 | peano2re 8157 | . 2 ⊢ (𝑍 ∈ ℝ → (𝑍 + 1) ∈ ℝ) | |
3 | hover.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) | |
4 | preq1 3696 | . . . . . . 7 ⊢ (𝑥 = (𝑍 + 2) → {𝑥, 0} = {(𝑍 + 2), 0}) | |
5 | 4 | infeq1d 7073 | . . . . . 6 ⊢ (𝑥 = (𝑍 + 2) → inf({𝑥, 0}, ℝ, < ) = inf({(𝑍 + 2), 0}, ℝ, < )) |
6 | oveq1 5926 | . . . . . 6 ⊢ (𝑥 = (𝑍 + 2) → (𝑥 − 1) = ((𝑍 + 2) − 1)) | |
7 | 5, 6 | preq12d 3704 | . . . . 5 ⊢ (𝑥 = (𝑍 + 2) → {inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)} = {inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}) |
8 | 7 | supeq1d 7048 | . . . 4 ⊢ (𝑥 = (𝑍 + 2) → sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < ) = sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < )) |
9 | 2re 9054 | . . . . . 6 ⊢ 2 ∈ ℝ | |
10 | 9 | a1i 9 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 2 ∈ ℝ) |
11 | 1, 10 | readdcld 8051 | . . . 4 ⊢ (𝑍 ∈ ℝ → (𝑍 + 2) ∈ ℝ) |
12 | 0red 8022 | . . . . . 6 ⊢ (𝑍 ∈ ℝ → 0 ∈ ℝ) | |
13 | mincl 11377 | . . . . . 6 ⊢ (((𝑍 + 2) ∈ ℝ ∧ 0 ∈ ℝ) → inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ) | |
14 | 11, 12, 13 | syl2anc 411 | . . . . 5 ⊢ (𝑍 ∈ ℝ → inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ) |
15 | peano2rem 8288 | . . . . . 6 ⊢ ((𝑍 + 2) ∈ ℝ → ((𝑍 + 2) − 1) ∈ ℝ) | |
16 | 11, 15 | syl 14 | . . . . 5 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) ∈ ℝ) |
17 | maxcl 11357 | . . . . 5 ⊢ ((inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ ∧ ((𝑍 + 2) − 1) ∈ ℝ) → sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < ) ∈ ℝ) | |
18 | 14, 16, 17 | syl2anc 411 | . . . 4 ⊢ (𝑍 ∈ ℝ → sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < ) ∈ ℝ) |
19 | 3, 8, 11, 18 | fvmptd3 5652 | . . 3 ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 + 2)) = sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < )) |
20 | 19, 18 | eqeltrd 2270 | . 2 ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 + 2)) ∈ ℝ) |
21 | ltp1 8865 | . 2 ⊢ (𝑍 ∈ ℝ → 𝑍 < (𝑍 + 1)) | |
22 | recn 8007 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 𝑍 ∈ ℂ) | |
23 | 2cnd 9057 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 2 ∈ ℂ) | |
24 | 1cnd 8037 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 1 ∈ ℂ) | |
25 | 22, 23, 24 | addsubassd 8352 | . . . 4 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) = (𝑍 + (2 − 1))) |
26 | 2m1e1 9102 | . . . . 5 ⊢ (2 − 1) = 1 | |
27 | 26 | oveq2i 5930 | . . . 4 ⊢ (𝑍 + (2 − 1)) = (𝑍 + 1) |
28 | 25, 27 | eqtrdi 2242 | . . 3 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) = (𝑍 + 1)) |
29 | maxle2 11359 | . . . . 5 ⊢ ((inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ ∧ ((𝑍 + 2) − 1) ∈ ℝ) → ((𝑍 + 2) − 1) ≤ sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < )) | |
30 | 14, 16, 29 | syl2anc 411 | . . . 4 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) ≤ sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < )) |
31 | 30, 19 | breqtrrd 4058 | . . 3 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) ≤ (𝐹‘(𝑍 + 2))) |
32 | 28, 31 | eqbrtrrd 4054 | . 2 ⊢ (𝑍 ∈ ℝ → (𝑍 + 1) ≤ (𝐹‘(𝑍 + 2))) |
33 | 1, 2, 20, 21, 32 | ltletrd 8444 | 1 ⊢ (𝑍 ∈ ℝ → 𝑍 < (𝐹‘(𝑍 + 2))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 {cpr 3620 class class class wbr 4030 ↦ cmpt 4091 ‘cfv 5255 (class class class)co 5919 supcsup 7043 infcinf 7044 ℝcr 7873 0cc0 7874 1c1 7875 + caddc 7877 < clt 8056 ≤ cle 8057 − cmin 8192 2c2 9035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-rp 9723 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 |
This theorem is referenced by: ivthdichlem 14830 |
Copyright terms: Public domain | W3C validator |