| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hoverb | GIF version | ||
| Description: A point at which the hover function is greater than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| hover.f | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) |
| Ref | Expression |
|---|---|
| hoverb | ⊢ (𝑍 ∈ ℝ → 𝑍 < (𝐹‘(𝑍 + 2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝑍 ∈ ℝ → 𝑍 ∈ ℝ) | |
| 2 | peano2re 8208 | . 2 ⊢ (𝑍 ∈ ℝ → (𝑍 + 1) ∈ ℝ) | |
| 3 | hover.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) | |
| 4 | preq1 3710 | . . . . . . 7 ⊢ (𝑥 = (𝑍 + 2) → {𝑥, 0} = {(𝑍 + 2), 0}) | |
| 5 | 4 | infeq1d 7114 | . . . . . 6 ⊢ (𝑥 = (𝑍 + 2) → inf({𝑥, 0}, ℝ, < ) = inf({(𝑍 + 2), 0}, ℝ, < )) |
| 6 | oveq1 5951 | . . . . . 6 ⊢ (𝑥 = (𝑍 + 2) → (𝑥 − 1) = ((𝑍 + 2) − 1)) | |
| 7 | 5, 6 | preq12d 3718 | . . . . 5 ⊢ (𝑥 = (𝑍 + 2) → {inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)} = {inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}) |
| 8 | 7 | supeq1d 7089 | . . . 4 ⊢ (𝑥 = (𝑍 + 2) → sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < ) = sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < )) |
| 9 | 2re 9106 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 10 | 9 | a1i 9 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 2 ∈ ℝ) |
| 11 | 1, 10 | readdcld 8102 | . . . 4 ⊢ (𝑍 ∈ ℝ → (𝑍 + 2) ∈ ℝ) |
| 12 | 0red 8073 | . . . . . 6 ⊢ (𝑍 ∈ ℝ → 0 ∈ ℝ) | |
| 13 | mincl 11542 | . . . . . 6 ⊢ (((𝑍 + 2) ∈ ℝ ∧ 0 ∈ ℝ) → inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ) | |
| 14 | 11, 12, 13 | syl2anc 411 | . . . . 5 ⊢ (𝑍 ∈ ℝ → inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ) |
| 15 | peano2rem 8339 | . . . . . 6 ⊢ ((𝑍 + 2) ∈ ℝ → ((𝑍 + 2) − 1) ∈ ℝ) | |
| 16 | 11, 15 | syl 14 | . . . . 5 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) ∈ ℝ) |
| 17 | maxcl 11521 | . . . . 5 ⊢ ((inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ ∧ ((𝑍 + 2) − 1) ∈ ℝ) → sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < ) ∈ ℝ) | |
| 18 | 14, 16, 17 | syl2anc 411 | . . . 4 ⊢ (𝑍 ∈ ℝ → sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < ) ∈ ℝ) |
| 19 | 3, 8, 11, 18 | fvmptd3 5673 | . . 3 ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 + 2)) = sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < )) |
| 20 | 19, 18 | eqeltrd 2282 | . 2 ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 + 2)) ∈ ℝ) |
| 21 | ltp1 8917 | . 2 ⊢ (𝑍 ∈ ℝ → 𝑍 < (𝑍 + 1)) | |
| 22 | recn 8058 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 𝑍 ∈ ℂ) | |
| 23 | 2cnd 9109 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 2 ∈ ℂ) | |
| 24 | 1cnd 8088 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 1 ∈ ℂ) | |
| 25 | 22, 23, 24 | addsubassd 8403 | . . . 4 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) = (𝑍 + (2 − 1))) |
| 26 | 2m1e1 9154 | . . . . 5 ⊢ (2 − 1) = 1 | |
| 27 | 26 | oveq2i 5955 | . . . 4 ⊢ (𝑍 + (2 − 1)) = (𝑍 + 1) |
| 28 | 25, 27 | eqtrdi 2254 | . . 3 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) = (𝑍 + 1)) |
| 29 | maxle2 11523 | . . . . 5 ⊢ ((inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ ∧ ((𝑍 + 2) − 1) ∈ ℝ) → ((𝑍 + 2) − 1) ≤ sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < )) | |
| 30 | 14, 16, 29 | syl2anc 411 | . . . 4 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) ≤ sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < )) |
| 31 | 30, 19 | breqtrrd 4072 | . . 3 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) ≤ (𝐹‘(𝑍 + 2))) |
| 32 | 28, 31 | eqbrtrrd 4068 | . 2 ⊢ (𝑍 ∈ ℝ → (𝑍 + 1) ≤ (𝐹‘(𝑍 + 2))) |
| 33 | 1, 2, 20, 21, 32 | ltletrd 8496 | 1 ⊢ (𝑍 ∈ ℝ → 𝑍 < (𝐹‘(𝑍 + 2))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 {cpr 3634 class class class wbr 4044 ↦ cmpt 4105 ‘cfv 5271 (class class class)co 5944 supcsup 7084 infcinf 7085 ℝcr 7924 0cc0 7925 1c1 7926 + caddc 7928 < clt 8107 ≤ cle 8108 − cmin 8243 2c2 9087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-sup 7086 df-inf 7087 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-rp 9776 df-seqfrec 10593 df-exp 10684 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 |
| This theorem is referenced by: ivthdichlem 15123 |
| Copyright terms: Public domain | W3C validator |