| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hoverb | GIF version | ||
| Description: A point at which the hover function is greater than a given value. (Contributed by Jim Kingdon, 21-Jul-2025.) |
| Ref | Expression |
|---|---|
| hover.f | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) |
| Ref | Expression |
|---|---|
| hoverb | ⊢ (𝑍 ∈ ℝ → 𝑍 < (𝐹‘(𝑍 + 2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝑍 ∈ ℝ → 𝑍 ∈ ℝ) | |
| 2 | peano2re 8179 | . 2 ⊢ (𝑍 ∈ ℝ → (𝑍 + 1) ∈ ℝ) | |
| 3 | hover.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) | |
| 4 | preq1 3700 | . . . . . . 7 ⊢ (𝑥 = (𝑍 + 2) → {𝑥, 0} = {(𝑍 + 2), 0}) | |
| 5 | 4 | infeq1d 7087 | . . . . . 6 ⊢ (𝑥 = (𝑍 + 2) → inf({𝑥, 0}, ℝ, < ) = inf({(𝑍 + 2), 0}, ℝ, < )) |
| 6 | oveq1 5932 | . . . . . 6 ⊢ (𝑥 = (𝑍 + 2) → (𝑥 − 1) = ((𝑍 + 2) − 1)) | |
| 7 | 5, 6 | preq12d 3708 | . . . . 5 ⊢ (𝑥 = (𝑍 + 2) → {inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)} = {inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}) |
| 8 | 7 | supeq1d 7062 | . . . 4 ⊢ (𝑥 = (𝑍 + 2) → sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < ) = sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < )) |
| 9 | 2re 9077 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 10 | 9 | a1i 9 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 2 ∈ ℝ) |
| 11 | 1, 10 | readdcld 8073 | . . . 4 ⊢ (𝑍 ∈ ℝ → (𝑍 + 2) ∈ ℝ) |
| 12 | 0red 8044 | . . . . . 6 ⊢ (𝑍 ∈ ℝ → 0 ∈ ℝ) | |
| 13 | mincl 11413 | . . . . . 6 ⊢ (((𝑍 + 2) ∈ ℝ ∧ 0 ∈ ℝ) → inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ) | |
| 14 | 11, 12, 13 | syl2anc 411 | . . . . 5 ⊢ (𝑍 ∈ ℝ → inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ) |
| 15 | peano2rem 8310 | . . . . . 6 ⊢ ((𝑍 + 2) ∈ ℝ → ((𝑍 + 2) − 1) ∈ ℝ) | |
| 16 | 11, 15 | syl 14 | . . . . 5 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) ∈ ℝ) |
| 17 | maxcl 11392 | . . . . 5 ⊢ ((inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ ∧ ((𝑍 + 2) − 1) ∈ ℝ) → sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < ) ∈ ℝ) | |
| 18 | 14, 16, 17 | syl2anc 411 | . . . 4 ⊢ (𝑍 ∈ ℝ → sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < ) ∈ ℝ) |
| 19 | 3, 8, 11, 18 | fvmptd3 5658 | . . 3 ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 + 2)) = sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < )) |
| 20 | 19, 18 | eqeltrd 2273 | . 2 ⊢ (𝑍 ∈ ℝ → (𝐹‘(𝑍 + 2)) ∈ ℝ) |
| 21 | ltp1 8888 | . 2 ⊢ (𝑍 ∈ ℝ → 𝑍 < (𝑍 + 1)) | |
| 22 | recn 8029 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 𝑍 ∈ ℂ) | |
| 23 | 2cnd 9080 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 2 ∈ ℂ) | |
| 24 | 1cnd 8059 | . . . . 5 ⊢ (𝑍 ∈ ℝ → 1 ∈ ℂ) | |
| 25 | 22, 23, 24 | addsubassd 8374 | . . . 4 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) = (𝑍 + (2 − 1))) |
| 26 | 2m1e1 9125 | . . . . 5 ⊢ (2 − 1) = 1 | |
| 27 | 26 | oveq2i 5936 | . . . 4 ⊢ (𝑍 + (2 − 1)) = (𝑍 + 1) |
| 28 | 25, 27 | eqtrdi 2245 | . . 3 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) = (𝑍 + 1)) |
| 29 | maxle2 11394 | . . . . 5 ⊢ ((inf({(𝑍 + 2), 0}, ℝ, < ) ∈ ℝ ∧ ((𝑍 + 2) − 1) ∈ ℝ) → ((𝑍 + 2) − 1) ≤ sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < )) | |
| 30 | 14, 16, 29 | syl2anc 411 | . . . 4 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) ≤ sup({inf({(𝑍 + 2), 0}, ℝ, < ), ((𝑍 + 2) − 1)}, ℝ, < )) |
| 31 | 30, 19 | breqtrrd 4062 | . . 3 ⊢ (𝑍 ∈ ℝ → ((𝑍 + 2) − 1) ≤ (𝐹‘(𝑍 + 2))) |
| 32 | 28, 31 | eqbrtrrd 4058 | . 2 ⊢ (𝑍 ∈ ℝ → (𝑍 + 1) ≤ (𝐹‘(𝑍 + 2))) |
| 33 | 1, 2, 20, 21, 32 | ltletrd 8467 | 1 ⊢ (𝑍 ∈ ℝ → 𝑍 < (𝐹‘(𝑍 + 2))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 {cpr 3624 class class class wbr 4034 ↦ cmpt 4095 ‘cfv 5259 (class class class)co 5925 supcsup 7057 infcinf 7058 ℝcr 7895 0cc0 7896 1c1 7897 + caddc 7899 < clt 8078 ≤ cle 8079 − cmin 8214 2c2 9058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-rp 9746 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 |
| This theorem is referenced by: ivthdichlem 14971 |
| Copyright terms: Public domain | W3C validator |