ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvconstss GIF version

Theorem dvconstss 15042
Description: Derivative of a constant function defined on an open set. (Contributed by Jim Kingdon, 6-Oct-2025.)
Hypotheses
Ref Expression
dvconstss.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvconstss.j 𝐽 = (𝐾t 𝑆)
dvconstss.k 𝐾 = (MetOpen‘(abs ∘ − ))
dvconstss.x (𝜑𝑋𝐽)
dvconstss.a (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
dvconstss (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0}))

Proof of Theorem dvconstss
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvconstss.s . 2 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvconstss.j . 2 𝐽 = (𝐾t 𝑆)
3 dvconstss.k . 2 𝐾 = (MetOpen‘(abs ∘ − ))
4 dvconstss.a . . 3 (𝜑𝐴 ∈ ℂ)
5 fconst6g 5459 . . 3 (𝐴 ∈ ℂ → (𝑋 × {𝐴}):𝑋⟶ℂ)
64, 5syl 14 . 2 (𝜑 → (𝑋 × {𝐴}):𝑋⟶ℂ)
7 dvconstss.x . 2 (𝜑𝑋𝐽)
8 simpr2 1006 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑧𝑋)
9 fvconst2g 5779 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧𝑋) → ((𝑋 × {𝐴})‘𝑧) = 𝐴)
104, 8, 9syl2an2r 595 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → ((𝑋 × {𝐴})‘𝑧) = 𝐴)
11 simpr1 1005 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑥𝑋)
12 fvconst2g 5779 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
134, 11, 12syl2an2r 595 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
1410, 13oveq12d 5943 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) = (𝐴𝐴))
154adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝐴 ∈ ℂ)
1615subidd 8344 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (𝐴𝐴) = 0)
1714, 16eqtrd 2229 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) = 0)
1817oveq1d 5940 . . 3 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → ((((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) / (𝑧𝑥)) = (0 / (𝑧𝑥)))
19 restsspw 12953 . . . . . . . . . . 11 (𝐾t 𝑆) ⊆ 𝒫 𝑆
202, 19eqsstri 3216 . . . . . . . . . 10 𝐽 ⊆ 𝒫 𝑆
2120, 7sselid 3182 . . . . . . . . 9 (𝜑𝑋 ∈ 𝒫 𝑆)
2221elpwid 3617 . . . . . . . 8 (𝜑𝑋𝑆)
23 recnprss 15031 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
241, 23syl 14 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
2522, 24sstrd 3194 . . . . . . 7 (𝜑𝑋 ⊆ ℂ)
2625adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑋 ⊆ ℂ)
2726, 8sseldd 3185 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑧 ∈ ℂ)
2826, 11sseldd 3185 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑥 ∈ ℂ)
2927, 28subcld 8356 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (𝑧𝑥) ∈ ℂ)
30 simpr3 1007 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑧 # 𝑥)
3127, 28, 30subap0d 8690 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (𝑧𝑥) # 0)
3229, 31div0apd 8833 . . 3 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (0 / (𝑧𝑥)) = 0)
3318, 32eqtrd 2229 . 2 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → ((((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) / (𝑧𝑥)) = 0)
34 0cn 8037 . 2 0 ∈ ℂ
351, 2, 3, 6, 7, 33, 34dvidsslem 15037 1 (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wss 3157  𝒫 cpw 3606  {csn 3623  {cpr 3624   class class class wbr 4034   × cxp 4662  ccom 4668  wf 5255  cfv 5259  (class class class)co 5925  cc 7896  cr 7897  0cc0 7898  cmin 8216   # cap 8627   / cdiv 8718  abscabs 11181  t crest 12943  MetOpencmopn 14175   D cdv 14999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-pm 6719  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-rest 12945  df-topgen 12964  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-top 14342  df-topon 14355  df-bases 14387  df-ntr 14440  df-cn 14532  df-cnp 14533  df-cncf 14915  df-limced 15000  df-dvap 15001
This theorem is referenced by:  dvmptfsum  15069
  Copyright terms: Public domain W3C validator