| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvconstss | GIF version | ||
| Description: Derivative of a constant function defined on an open set. (Contributed by Jim Kingdon, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dvconstss.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvconstss.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
| dvconstss.k | ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) |
| dvconstss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| dvconstss.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| dvconstss | ⊢ (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvconstss.s | . 2 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvconstss.j | . 2 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
| 3 | dvconstss.k | . 2 ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) | |
| 4 | dvconstss.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 5 | fconst6g 5481 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝑋 × {𝐴}):𝑋⟶ℂ) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝜑 → (𝑋 × {𝐴}):𝑋⟶ℂ) |
| 7 | dvconstss.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐽) | |
| 8 | simpr2 1007 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑧 ∈ 𝑋) | |
| 9 | fvconst2g 5805 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ 𝑋) → ((𝑋 × {𝐴})‘𝑧) = 𝐴) | |
| 10 | 4, 8, 9 | syl2an2r 595 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → ((𝑋 × {𝐴})‘𝑧) = 𝐴) |
| 11 | simpr1 1006 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑥 ∈ 𝑋) | |
| 12 | fvconst2g 5805 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴) | |
| 13 | 4, 11, 12 | syl2an2r 595 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → ((𝑋 × {𝐴})‘𝑥) = 𝐴) |
| 14 | 10, 13 | oveq12d 5969 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) = (𝐴 − 𝐴)) |
| 15 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝐴 ∈ ℂ) |
| 16 | 15 | subidd 8378 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (𝐴 − 𝐴) = 0) |
| 17 | 14, 16 | eqtrd 2239 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) = 0) |
| 18 | 17 | oveq1d 5966 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → ((((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) / (𝑧 − 𝑥)) = (0 / (𝑧 − 𝑥))) |
| 19 | restsspw 13125 | . . . . . . . . . . 11 ⊢ (𝐾 ↾t 𝑆) ⊆ 𝒫 𝑆 | |
| 20 | 2, 19 | eqsstri 3226 | . . . . . . . . . 10 ⊢ 𝐽 ⊆ 𝒫 𝑆 |
| 21 | 20, 7 | sselid 3192 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑆) |
| 22 | 21 | elpwid 3628 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 23 | recnprss 15203 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 24 | 1, 23 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 25 | 22, 24 | sstrd 3204 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 26 | 25 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑋 ⊆ ℂ) |
| 27 | 26, 8 | sseldd 3195 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑧 ∈ ℂ) |
| 28 | 26, 11 | sseldd 3195 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑥 ∈ ℂ) |
| 29 | 27, 28 | subcld 8390 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (𝑧 − 𝑥) ∈ ℂ) |
| 30 | simpr3 1008 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑧 # 𝑥) | |
| 31 | 27, 28, 30 | subap0d 8724 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (𝑧 − 𝑥) # 0) |
| 32 | 29, 31 | div0apd 8867 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (0 / (𝑧 − 𝑥)) = 0) |
| 33 | 18, 32 | eqtrd 2239 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → ((((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) / (𝑧 − 𝑥)) = 0) |
| 34 | 0cn 8071 | . 2 ⊢ 0 ∈ ℂ | |
| 35 | 1, 2, 3, 6, 7, 33, 34 | dvidsslem 15209 | 1 ⊢ (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ⊆ wss 3167 𝒫 cpw 3617 {csn 3634 {cpr 3635 class class class wbr 4047 × cxp 4677 ∘ ccom 4683 ⟶wf 5272 ‘cfv 5276 (class class class)co 5951 ℂcc 7930 ℝcr 7931 0cc0 7932 − cmin 8250 # cap 8661 / cdiv 8752 abscabs 11352 ↾t crest 13115 MetOpencmopn 14347 D cdv 15171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-map 6744 df-pm 6745 df-sup 7093 df-inf 7094 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-xneg 9901 df-xadd 9902 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-rest 13117 df-topgen 13136 df-psmet 14349 df-xmet 14350 df-met 14351 df-bl 14352 df-mopn 14353 df-top 14514 df-topon 14527 df-bases 14559 df-ntr 14612 df-cn 14704 df-cnp 14705 df-cncf 15087 df-limced 15172 df-dvap 15173 |
| This theorem is referenced by: dvmptfsum 15241 |
| Copyright terms: Public domain | W3C validator |