ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvconstss GIF version

Theorem dvconstss 15337
Description: Derivative of a constant function defined on an open set. (Contributed by Jim Kingdon, 6-Oct-2025.)
Hypotheses
Ref Expression
dvconstss.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvconstss.j 𝐽 = (𝐾t 𝑆)
dvconstss.k 𝐾 = (MetOpen‘(abs ∘ − ))
dvconstss.x (𝜑𝑋𝐽)
dvconstss.a (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
dvconstss (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0}))

Proof of Theorem dvconstss
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvconstss.s . 2 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvconstss.j . 2 𝐽 = (𝐾t 𝑆)
3 dvconstss.k . 2 𝐾 = (MetOpen‘(abs ∘ − ))
4 dvconstss.a . . 3 (𝜑𝐴 ∈ ℂ)
5 fconst6g 5500 . . 3 (𝐴 ∈ ℂ → (𝑋 × {𝐴}):𝑋⟶ℂ)
64, 5syl 14 . 2 (𝜑 → (𝑋 × {𝐴}):𝑋⟶ℂ)
7 dvconstss.x . 2 (𝜑𝑋𝐽)
8 simpr2 1009 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑧𝑋)
9 fvconst2g 5826 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧𝑋) → ((𝑋 × {𝐴})‘𝑧) = 𝐴)
104, 8, 9syl2an2r 597 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → ((𝑋 × {𝐴})‘𝑧) = 𝐴)
11 simpr1 1008 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑥𝑋)
12 fvconst2g 5826 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
134, 11, 12syl2an2r 597 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
1410, 13oveq12d 5992 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) = (𝐴𝐴))
154adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝐴 ∈ ℂ)
1615subidd 8413 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (𝐴𝐴) = 0)
1714, 16eqtrd 2242 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) = 0)
1817oveq1d 5989 . . 3 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → ((((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) / (𝑧𝑥)) = (0 / (𝑧𝑥)))
19 restsspw 13248 . . . . . . . . . . 11 (𝐾t 𝑆) ⊆ 𝒫 𝑆
202, 19eqsstri 3236 . . . . . . . . . 10 𝐽 ⊆ 𝒫 𝑆
2120, 7sselid 3202 . . . . . . . . 9 (𝜑𝑋 ∈ 𝒫 𝑆)
2221elpwid 3640 . . . . . . . 8 (𝜑𝑋𝑆)
23 recnprss 15326 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
241, 23syl 14 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
2522, 24sstrd 3214 . . . . . . 7 (𝜑𝑋 ⊆ ℂ)
2625adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑋 ⊆ ℂ)
2726, 8sseldd 3205 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑧 ∈ ℂ)
2826, 11sseldd 3205 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑥 ∈ ℂ)
2927, 28subcld 8425 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (𝑧𝑥) ∈ ℂ)
30 simpr3 1010 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑧 # 𝑥)
3127, 28, 30subap0d 8759 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (𝑧𝑥) # 0)
3229, 31div0apd 8902 . . 3 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (0 / (𝑧𝑥)) = 0)
3318, 32eqtrd 2242 . 2 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → ((((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) / (𝑧𝑥)) = 0)
34 0cn 8106 . 2 0 ∈ ℂ
351, 2, 3, 6, 7, 33, 34dvidsslem 15332 1 (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  wss 3177  𝒫 cpw 3629  {csn 3646  {cpr 3647   class class class wbr 4062   × cxp 4694  ccom 4700  wf 5290  cfv 5294  (class class class)co 5974  cc 7965  cr 7966  0cc0 7967  cmin 8285   # cap 8696   / cdiv 8787  abscabs 11474  t crest 13238  MetOpencmopn 14470   D cdv 15294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-map 6767  df-pm 6768  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-xneg 9936  df-xadd 9937  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-rest 13240  df-topgen 13259  df-psmet 14472  df-xmet 14473  df-met 14474  df-bl 14475  df-mopn 14476  df-top 14637  df-topon 14650  df-bases 14682  df-ntr 14735  df-cn 14827  df-cnp 14828  df-cncf 15210  df-limced 15295  df-dvap 15296
This theorem is referenced by:  dvmptfsum  15364
  Copyright terms: Public domain W3C validator