| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dvconstss | GIF version | ||
| Description: Derivative of a constant function defined on an open set. (Contributed by Jim Kingdon, 6-Oct-2025.) | 
| Ref | Expression | 
|---|---|
| dvconstss.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | 
| dvconstss.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) | 
| dvconstss.k | ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) | 
| dvconstss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐽) | 
| dvconstss.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| Ref | Expression | 
|---|---|
| dvconstss | ⊢ (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0})) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dvconstss.s | . 2 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvconstss.j | . 2 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
| 3 | dvconstss.k | . 2 ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) | |
| 4 | dvconstss.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 5 | fconst6g 5456 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝑋 × {𝐴}):𝑋⟶ℂ) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝜑 → (𝑋 × {𝐴}):𝑋⟶ℂ) | 
| 7 | dvconstss.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐽) | |
| 8 | simpr2 1006 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑧 ∈ 𝑋) | |
| 9 | fvconst2g 5776 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ 𝑋) → ((𝑋 × {𝐴})‘𝑧) = 𝐴) | |
| 10 | 4, 8, 9 | syl2an2r 595 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → ((𝑋 × {𝐴})‘𝑧) = 𝐴) | 
| 11 | simpr1 1005 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑥 ∈ 𝑋) | |
| 12 | fvconst2g 5776 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴) | |
| 13 | 4, 11, 12 | syl2an2r 595 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → ((𝑋 × {𝐴})‘𝑥) = 𝐴) | 
| 14 | 10, 13 | oveq12d 5940 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) = (𝐴 − 𝐴)) | 
| 15 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝐴 ∈ ℂ) | 
| 16 | 15 | subidd 8325 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (𝐴 − 𝐴) = 0) | 
| 17 | 14, 16 | eqtrd 2229 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) = 0) | 
| 18 | 17 | oveq1d 5937 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → ((((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) / (𝑧 − 𝑥)) = (0 / (𝑧 − 𝑥))) | 
| 19 | restsspw 12920 | . . . . . . . . . . 11 ⊢ (𝐾 ↾t 𝑆) ⊆ 𝒫 𝑆 | |
| 20 | 2, 19 | eqsstri 3215 | . . . . . . . . . 10 ⊢ 𝐽 ⊆ 𝒫 𝑆 | 
| 21 | 20, 7 | sselid 3181 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑆) | 
| 22 | 21 | elpwid 3616 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | 
| 23 | recnprss 14923 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 24 | 1, 23 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | 
| 25 | 22, 24 | sstrd 3193 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ ℂ) | 
| 26 | 25 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑋 ⊆ ℂ) | 
| 27 | 26, 8 | sseldd 3184 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑧 ∈ ℂ) | 
| 28 | 26, 11 | sseldd 3184 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑥 ∈ ℂ) | 
| 29 | 27, 28 | subcld 8337 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (𝑧 − 𝑥) ∈ ℂ) | 
| 30 | simpr3 1007 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑧 # 𝑥) | |
| 31 | 27, 28, 30 | subap0d 8671 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (𝑧 − 𝑥) # 0) | 
| 32 | 29, 31 | div0apd 8814 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (0 / (𝑧 − 𝑥)) = 0) | 
| 33 | 18, 32 | eqtrd 2229 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → ((((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) / (𝑧 − 𝑥)) = 0) | 
| 34 | 0cn 8018 | . 2 ⊢ 0 ∈ ℂ | |
| 35 | 1, 2, 3, 6, 7, 33, 34 | dvidsslem 14929 | 1 ⊢ (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0})) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 𝒫 cpw 3605 {csn 3622 {cpr 3623 class class class wbr 4033 × cxp 4661 ∘ ccom 4667 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 ℝcr 7878 0cc0 7879 − cmin 8197 # cap 8608 / cdiv 8699 abscabs 11162 ↾t crest 12910 MetOpencmopn 14097 D cdv 14891 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-map 6709 df-pm 6710 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-rest 12912 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-met 14101 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 df-ntr 14332 df-cn 14424 df-cnp 14425 df-cncf 14807 df-limced 14892 df-dvap 14893 | 
| This theorem is referenced by: dvmptfsum 14961 | 
| Copyright terms: Public domain | W3C validator |