| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvconstss | GIF version | ||
| Description: Derivative of a constant function defined on an open set. (Contributed by Jim Kingdon, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dvconstss.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvconstss.j | ⊢ 𝐽 = (𝐾 ↾t 𝑆) |
| dvconstss.k | ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) |
| dvconstss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| dvconstss.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| dvconstss | ⊢ (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvconstss.s | . 2 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | dvconstss.j | . 2 ⊢ 𝐽 = (𝐾 ↾t 𝑆) | |
| 3 | dvconstss.k | . 2 ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) | |
| 4 | dvconstss.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 5 | fconst6g 5526 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝑋 × {𝐴}):𝑋⟶ℂ) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝜑 → (𝑋 × {𝐴}):𝑋⟶ℂ) |
| 7 | dvconstss.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐽) | |
| 8 | simpr2 1028 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑧 ∈ 𝑋) | |
| 9 | fvconst2g 5857 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ 𝑋) → ((𝑋 × {𝐴})‘𝑧) = 𝐴) | |
| 10 | 4, 8, 9 | syl2an2r 597 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → ((𝑋 × {𝐴})‘𝑧) = 𝐴) |
| 11 | simpr1 1027 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑥 ∈ 𝑋) | |
| 12 | fvconst2g 5857 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴) | |
| 13 | 4, 11, 12 | syl2an2r 597 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → ((𝑋 × {𝐴})‘𝑥) = 𝐴) |
| 14 | 10, 13 | oveq12d 6025 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) = (𝐴 − 𝐴)) |
| 15 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝐴 ∈ ℂ) |
| 16 | 15 | subidd 8453 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (𝐴 − 𝐴) = 0) |
| 17 | 14, 16 | eqtrd 2262 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) = 0) |
| 18 | 17 | oveq1d 6022 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → ((((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) / (𝑧 − 𝑥)) = (0 / (𝑧 − 𝑥))) |
| 19 | restsspw 13290 | . . . . . . . . . . 11 ⊢ (𝐾 ↾t 𝑆) ⊆ 𝒫 𝑆 | |
| 20 | 2, 19 | eqsstri 3256 | . . . . . . . . . 10 ⊢ 𝐽 ⊆ 𝒫 𝑆 |
| 21 | 20, 7 | sselid 3222 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑆) |
| 22 | 21 | elpwid 3660 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 23 | recnprss 15369 | . . . . . . . . 9 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 24 | 1, 23 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 25 | 22, 24 | sstrd 3234 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 26 | 25 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑋 ⊆ ℂ) |
| 27 | 26, 8 | sseldd 3225 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑧 ∈ ℂ) |
| 28 | 26, 11 | sseldd 3225 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑥 ∈ ℂ) |
| 29 | 27, 28 | subcld 8465 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (𝑧 − 𝑥) ∈ ℂ) |
| 30 | simpr3 1029 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → 𝑧 # 𝑥) | |
| 31 | 27, 28, 30 | subap0d 8799 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (𝑧 − 𝑥) # 0) |
| 32 | 29, 31 | div0apd 8942 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (0 / (𝑧 − 𝑥)) = 0) |
| 33 | 18, 32 | eqtrd 2262 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → ((((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) / (𝑧 − 𝑥)) = 0) |
| 34 | 0cn 8146 | . 2 ⊢ 0 ∈ ℂ | |
| 35 | 1, 2, 3, 6, 7, 33, 34 | dvidsslem 15375 | 1 ⊢ (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 𝒫 cpw 3649 {csn 3666 {cpr 3667 class class class wbr 4083 × cxp 4717 ∘ ccom 4723 ⟶wf 5314 ‘cfv 5318 (class class class)co 6007 ℂcc 8005 ℝcr 8006 0cc0 8007 − cmin 8325 # cap 8736 / cdiv 8827 abscabs 11516 ↾t crest 13280 MetOpencmopn 14513 D cdv 15337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-map 6805 df-pm 6806 df-sup 7159 df-inf 7160 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-xneg 9976 df-xadd 9977 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-rest 13282 df-topgen 13301 df-psmet 14515 df-xmet 14516 df-met 14517 df-bl 14518 df-mopn 14519 df-top 14680 df-topon 14693 df-bases 14725 df-ntr 14778 df-cn 14870 df-cnp 14871 df-cncf 15253 df-limced 15338 df-dvap 15339 |
| This theorem is referenced by: dvmptfsum 15407 |
| Copyright terms: Public domain | W3C validator |