ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvconstss GIF version

Theorem dvconstss 15214
Description: Derivative of a constant function defined on an open set. (Contributed by Jim Kingdon, 6-Oct-2025.)
Hypotheses
Ref Expression
dvconstss.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvconstss.j 𝐽 = (𝐾t 𝑆)
dvconstss.k 𝐾 = (MetOpen‘(abs ∘ − ))
dvconstss.x (𝜑𝑋𝐽)
dvconstss.a (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
dvconstss (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0}))

Proof of Theorem dvconstss
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvconstss.s . 2 (𝜑𝑆 ∈ {ℝ, ℂ})
2 dvconstss.j . 2 𝐽 = (𝐾t 𝑆)
3 dvconstss.k . 2 𝐾 = (MetOpen‘(abs ∘ − ))
4 dvconstss.a . . 3 (𝜑𝐴 ∈ ℂ)
5 fconst6g 5481 . . 3 (𝐴 ∈ ℂ → (𝑋 × {𝐴}):𝑋⟶ℂ)
64, 5syl 14 . 2 (𝜑 → (𝑋 × {𝐴}):𝑋⟶ℂ)
7 dvconstss.x . 2 (𝜑𝑋𝐽)
8 simpr2 1007 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑧𝑋)
9 fvconst2g 5805 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧𝑋) → ((𝑋 × {𝐴})‘𝑧) = 𝐴)
104, 8, 9syl2an2r 595 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → ((𝑋 × {𝐴})‘𝑧) = 𝐴)
11 simpr1 1006 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑥𝑋)
12 fvconst2g 5805 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥𝑋) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
134, 11, 12syl2an2r 595 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → ((𝑋 × {𝐴})‘𝑥) = 𝐴)
1410, 13oveq12d 5969 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) = (𝐴𝐴))
154adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝐴 ∈ ℂ)
1615subidd 8378 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (𝐴𝐴) = 0)
1714, 16eqtrd 2239 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) = 0)
1817oveq1d 5966 . . 3 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → ((((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) / (𝑧𝑥)) = (0 / (𝑧𝑥)))
19 restsspw 13125 . . . . . . . . . . 11 (𝐾t 𝑆) ⊆ 𝒫 𝑆
202, 19eqsstri 3226 . . . . . . . . . 10 𝐽 ⊆ 𝒫 𝑆
2120, 7sselid 3192 . . . . . . . . 9 (𝜑𝑋 ∈ 𝒫 𝑆)
2221elpwid 3628 . . . . . . . 8 (𝜑𝑋𝑆)
23 recnprss 15203 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
241, 23syl 14 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
2522, 24sstrd 3204 . . . . . . 7 (𝜑𝑋 ⊆ ℂ)
2625adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑋 ⊆ ℂ)
2726, 8sseldd 3195 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑧 ∈ ℂ)
2826, 11sseldd 3195 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑥 ∈ ℂ)
2927, 28subcld 8390 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (𝑧𝑥) ∈ ℂ)
30 simpr3 1008 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → 𝑧 # 𝑥)
3127, 28, 30subap0d 8724 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (𝑧𝑥) # 0)
3229, 31div0apd 8867 . . 3 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (0 / (𝑧𝑥)) = 0)
3318, 32eqtrd 2239 . 2 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → ((((𝑋 × {𝐴})‘𝑧) − ((𝑋 × {𝐴})‘𝑥)) / (𝑧𝑥)) = 0)
34 0cn 8071 . 2 0 ∈ ℂ
351, 2, 3, 6, 7, 33, 34dvidsslem 15209 1 (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wss 3167  𝒫 cpw 3617  {csn 3634  {cpr 3635   class class class wbr 4047   × cxp 4677  ccom 4683  wf 5272  cfv 5276  (class class class)co 5951  cc 7930  cr 7931  0cc0 7932  cmin 8250   # cap 8661   / cdiv 8752  abscabs 11352  t crest 13115  MetOpencmopn 14347   D cdv 15171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-map 6744  df-pm 6745  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-xneg 9901  df-xadd 9902  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-rest 13117  df-topgen 13136  df-psmet 14349  df-xmet 14350  df-met 14351  df-bl 14352  df-mopn 14353  df-top 14514  df-topon 14527  df-bases 14559  df-ntr 14612  df-cn 14704  df-cnp 14705  df-cncf 15087  df-limced 15172  df-dvap 15173
This theorem is referenced by:  dvmptfsum  15241
  Copyright terms: Public domain W3C validator