| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hovercncf | GIF version | ||
| Description: The hover function is continuous. By hover function, we mean a a function which starts out as a line of slope one, is constant at zero from zero to one, and then resumes as a slope of one. (Contributed by Jim Kingdon, 20-Jul-2025.) |
| Ref | Expression |
|---|---|
| hover.f | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) |
| Ref | Expression |
|---|---|
| hovercncf | ⊢ 𝐹 ∈ (ℝ–cn→ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hover.f | . 2 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) | |
| 2 | ssid 3204 | . . . . . . 7 ⊢ ℝ ⊆ ℝ | |
| 3 | ax-resscn 7988 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 4 | cncfmptid 14917 | . . . . . . 7 ⊢ ((ℝ ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝑥 ∈ ℝ ↦ 𝑥) ∈ (ℝ–cn→ℝ)) | |
| 5 | 2, 3, 4 | mp2an 426 | . . . . . 6 ⊢ (𝑥 ∈ ℝ ↦ 𝑥) ∈ (ℝ–cn→ℝ) |
| 6 | 5 | a1i 9 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ ↦ 𝑥) ∈ (ℝ–cn→ℝ)) |
| 7 | 0red 8044 | . . . . . 6 ⊢ (⊤ → 0 ∈ ℝ) | |
| 8 | 3 | a1i 9 | . . . . . 6 ⊢ (⊤ → ℝ ⊆ ℂ) |
| 9 | cncfmptc 14916 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑥 ∈ ℝ ↦ 0) ∈ (ℝ–cn→ℝ)) | |
| 10 | 7, 8, 8, 9 | syl3anc 1249 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ ↦ 0) ∈ (ℝ–cn→ℝ)) |
| 11 | 6, 10 | mincncf 14936 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ ↦ inf({𝑥, 0}, ℝ, < )) ∈ (ℝ–cn→ℝ)) |
| 12 | peano2rem 8310 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ) | |
| 13 | 12 | adantl 277 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (𝑥 − 1) ∈ ℝ) |
| 14 | 13 | fmpttd 5720 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ ↦ (𝑥 − 1)):ℝ⟶ℝ) |
| 15 | resmpt 4995 | . . . . . . . 8 ⊢ (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥 − 1)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 − 1))) | |
| 16 | 3, 15 | ax-mp 5 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥 − 1)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 − 1)) |
| 17 | ax-1cn 7989 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 18 | eqid 2196 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℂ ↦ (𝑥 − 1)) = (𝑥 ∈ ℂ ↦ (𝑥 − 1)) | |
| 19 | 18 | sub1cncf 14922 | . . . . . . . . 9 ⊢ (1 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝑥 − 1)) ∈ (ℂ–cn→ℂ)) |
| 20 | 17, 19 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ ↦ (𝑥 − 1)) ∈ (ℂ–cn→ℂ) |
| 21 | rescncf 14901 | . . . . . . . 8 ⊢ (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥 − 1)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥 − 1)) ↾ ℝ) ∈ (ℝ–cn→ℂ))) | |
| 22 | 3, 20, 21 | mp2 16 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥 − 1)) ↾ ℝ) ∈ (ℝ–cn→ℂ) |
| 23 | 16, 22 | eqeltrri 2270 | . . . . . 6 ⊢ (𝑥 ∈ ℝ ↦ (𝑥 − 1)) ∈ (ℝ–cn→ℂ) |
| 24 | cncfcdm 14902 | . . . . . 6 ⊢ ((ℝ ⊆ ℂ ∧ (𝑥 ∈ ℝ ↦ (𝑥 − 1)) ∈ (ℝ–cn→ℂ)) → ((𝑥 ∈ ℝ ↦ (𝑥 − 1)) ∈ (ℝ–cn→ℝ) ↔ (𝑥 ∈ ℝ ↦ (𝑥 − 1)):ℝ⟶ℝ)) | |
| 25 | 3, 23, 24 | mp2an 426 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ↦ (𝑥 − 1)) ∈ (ℝ–cn→ℝ) ↔ (𝑥 ∈ ℝ ↦ (𝑥 − 1)):ℝ⟶ℝ) |
| 26 | 14, 25 | sylibr 134 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ ↦ (𝑥 − 1)) ∈ (ℝ–cn→ℝ)) |
| 27 | 11, 26 | maxcncf 14935 | . . 3 ⊢ (⊤ → (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) ∈ (ℝ–cn→ℝ)) |
| 28 | 27 | mptru 1373 | . 2 ⊢ (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) ∈ (ℝ–cn→ℝ) |
| 29 | 1, 28 | eqeltri 2269 | 1 ⊢ 𝐹 ∈ (ℝ–cn→ℝ) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ⊤wtru 1365 ∈ wcel 2167 ⊆ wss 3157 {cpr 3624 ↦ cmpt 4095 ↾ cres 4666 ⟶wf 5255 (class class class)co 5925 supcsup 7057 infcinf 7058 ℂcc 7894 ℝcr 7895 0cc0 7896 1c1 7897 < clt 8078 − cmin 8214 –cn→ccncf 14890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 ax-addf 8018 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-map 6718 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-xneg 9864 df-xadd 9865 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-rest 12943 df-topgen 12962 df-psmet 14175 df-xmet 14176 df-met 14177 df-bl 14178 df-mopn 14179 df-top 14318 df-topon 14331 df-bases 14363 df-cn 14508 df-cnp 14509 df-tx 14573 df-cncf 14891 |
| This theorem is referenced by: ivthdichlem 14971 |
| Copyright terms: Public domain | W3C validator |