| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hovercncf | GIF version | ||
| Description: The hover function is continuous. By hover function, we mean a a function which starts out as a line of slope one, is constant at zero from zero to one, and then resumes as a slope of one. (Contributed by Jim Kingdon, 20-Jul-2025.) |
| Ref | Expression |
|---|---|
| hover.f | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) |
| Ref | Expression |
|---|---|
| hovercncf | ⊢ 𝐹 ∈ (ℝ–cn→ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hover.f | . 2 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) | |
| 2 | ssid 3221 | . . . . . . 7 ⊢ ℝ ⊆ ℝ | |
| 3 | ax-resscn 8052 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 4 | cncfmptid 15184 | . . . . . . 7 ⊢ ((ℝ ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝑥 ∈ ℝ ↦ 𝑥) ∈ (ℝ–cn→ℝ)) | |
| 5 | 2, 3, 4 | mp2an 426 | . . . . . 6 ⊢ (𝑥 ∈ ℝ ↦ 𝑥) ∈ (ℝ–cn→ℝ) |
| 6 | 5 | a1i 9 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ ↦ 𝑥) ∈ (ℝ–cn→ℝ)) |
| 7 | 0red 8108 | . . . . . 6 ⊢ (⊤ → 0 ∈ ℝ) | |
| 8 | 3 | a1i 9 | . . . . . 6 ⊢ (⊤ → ℝ ⊆ ℂ) |
| 9 | cncfmptc 15183 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑥 ∈ ℝ ↦ 0) ∈ (ℝ–cn→ℝ)) | |
| 10 | 7, 8, 8, 9 | syl3anc 1250 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ ↦ 0) ∈ (ℝ–cn→ℝ)) |
| 11 | 6, 10 | mincncf 15203 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ ↦ inf({𝑥, 0}, ℝ, < )) ∈ (ℝ–cn→ℝ)) |
| 12 | peano2rem 8374 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ) | |
| 13 | 12 | adantl 277 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (𝑥 − 1) ∈ ℝ) |
| 14 | 13 | fmpttd 5758 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ ↦ (𝑥 − 1)):ℝ⟶ℝ) |
| 15 | resmpt 5026 | . . . . . . . 8 ⊢ (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥 − 1)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 − 1))) | |
| 16 | 3, 15 | ax-mp 5 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥 − 1)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 − 1)) |
| 17 | ax-1cn 8053 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 18 | eqid 2207 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℂ ↦ (𝑥 − 1)) = (𝑥 ∈ ℂ ↦ (𝑥 − 1)) | |
| 19 | 18 | sub1cncf 15189 | . . . . . . . . 9 ⊢ (1 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝑥 − 1)) ∈ (ℂ–cn→ℂ)) |
| 20 | 17, 19 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ ↦ (𝑥 − 1)) ∈ (ℂ–cn→ℂ) |
| 21 | rescncf 15168 | . . . . . . . 8 ⊢ (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥 − 1)) ∈ (ℂ–cn→ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥 − 1)) ↾ ℝ) ∈ (ℝ–cn→ℂ))) | |
| 22 | 3, 20, 21 | mp2 16 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ↦ (𝑥 − 1)) ↾ ℝ) ∈ (ℝ–cn→ℂ) |
| 23 | 16, 22 | eqeltrri 2281 | . . . . . 6 ⊢ (𝑥 ∈ ℝ ↦ (𝑥 − 1)) ∈ (ℝ–cn→ℂ) |
| 24 | cncfcdm 15169 | . . . . . 6 ⊢ ((ℝ ⊆ ℂ ∧ (𝑥 ∈ ℝ ↦ (𝑥 − 1)) ∈ (ℝ–cn→ℂ)) → ((𝑥 ∈ ℝ ↦ (𝑥 − 1)) ∈ (ℝ–cn→ℝ) ↔ (𝑥 ∈ ℝ ↦ (𝑥 − 1)):ℝ⟶ℝ)) | |
| 25 | 3, 23, 24 | mp2an 426 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ↦ (𝑥 − 1)) ∈ (ℝ–cn→ℝ) ↔ (𝑥 ∈ ℝ ↦ (𝑥 − 1)):ℝ⟶ℝ) |
| 26 | 14, 25 | sylibr 134 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ ↦ (𝑥 − 1)) ∈ (ℝ–cn→ℝ)) |
| 27 | 11, 26 | maxcncf 15202 | . . 3 ⊢ (⊤ → (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) ∈ (ℝ–cn→ℝ)) |
| 28 | 27 | mptru 1382 | . 2 ⊢ (𝑥 ∈ ℝ ↦ sup({inf({𝑥, 0}, ℝ, < ), (𝑥 − 1)}, ℝ, < )) ∈ (ℝ–cn→ℝ) |
| 29 | 1, 28 | eqeltri 2280 | 1 ⊢ 𝐹 ∈ (ℝ–cn→ℝ) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ⊤wtru 1374 ∈ wcel 2178 ⊆ wss 3174 {cpr 3644 ↦ cmpt 4121 ↾ cres 4695 ⟶wf 5286 (class class class)co 5967 supcsup 7110 infcinf 7111 ℂcc 7958 ℝcr 7959 0cc0 7960 1c1 7961 < clt 8142 − cmin 8278 –cn→ccncf 15157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 ax-addf 8082 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-map 6760 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-rest 13188 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-met 14422 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-cn 14775 df-cnp 14776 df-tx 14840 df-cncf 15158 |
| This theorem is referenced by: ivthdichlem 15238 |
| Copyright terms: Public domain | W3C validator |