| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsquadlemofi | GIF version | ||
| Description: Lemma for lgsquad 15607. There are finitely many members of 𝑆 with odd first part. (Contributed by Jim Kingdon, 16-Sep-2025.) |
| Ref | Expression |
|---|---|
| lgseisen.1 | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| lgseisen.2 | ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) |
| lgseisen.3 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
| lgsquad.4 | ⊢ 𝑀 = ((𝑃 − 1) / 2) |
| lgsquad.5 | ⊢ 𝑁 = ((𝑄 − 1) / 2) |
| lgsquad.6 | ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} |
| Ref | Expression |
|---|---|
| lgsquadlemofi | ⊢ (𝜑 → {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st ‘𝑧)} ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lgseisen.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | lgseisen.2 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) | |
| 3 | lgseisen.3 | . . 3 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
| 4 | lgsquad.4 | . . 3 ⊢ 𝑀 = ((𝑃 − 1) / 2) | |
| 5 | lgsquad.5 | . . 3 ⊢ 𝑁 = ((𝑄 − 1) / 2) | |
| 6 | lgsquad.6 | . . 3 ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} | |
| 7 | 1, 2, 3, 4, 5, 6 | lgsquadlemsfi 15602 | . 2 ⊢ (𝜑 → 𝑆 ∈ Fin) |
| 8 | 2nn 9211 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 9 | opabssxp 4754 | . . . . . . . . . 10 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⊆ ((1...𝑀) × (1...𝑁)) | |
| 10 | 6, 9 | eqsstri 3227 | . . . . . . . . 9 ⊢ 𝑆 ⊆ ((1...𝑀) × (1...𝑁)) |
| 11 | 10 | sseli 3191 | . . . . . . . 8 ⊢ (𝑧 ∈ 𝑆 → 𝑧 ∈ ((1...𝑀) × (1...𝑁))) |
| 12 | xp1st 6261 | . . . . . . . 8 ⊢ (𝑧 ∈ ((1...𝑀) × (1...𝑁)) → (1st ‘𝑧) ∈ (1...𝑀)) | |
| 13 | 11, 12 | syl 14 | . . . . . . 7 ⊢ (𝑧 ∈ 𝑆 → (1st ‘𝑧) ∈ (1...𝑀)) |
| 14 | 13 | elfzelzd 10161 | . . . . . 6 ⊢ (𝑧 ∈ 𝑆 → (1st ‘𝑧) ∈ ℤ) |
| 15 | 14 | adantl 277 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (1st ‘𝑧) ∈ ℤ) |
| 16 | dvdsdc 12159 | . . . . 5 ⊢ ((2 ∈ ℕ ∧ (1st ‘𝑧) ∈ ℤ) → DECID 2 ∥ (1st ‘𝑧)) | |
| 17 | 8, 15, 16 | sylancr 414 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → DECID 2 ∥ (1st ‘𝑧)) |
| 18 | dcn 844 | . . . 4 ⊢ (DECID 2 ∥ (1st ‘𝑧) → DECID ¬ 2 ∥ (1st ‘𝑧)) | |
| 19 | 17, 18 | syl 14 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → DECID ¬ 2 ∥ (1st ‘𝑧)) |
| 20 | 19 | ralrimiva 2580 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝑆 DECID ¬ 2 ∥ (1st ‘𝑧)) |
| 21 | 7, 20 | ssfirab 7045 | 1 ⊢ (𝜑 → {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st ‘𝑧)} ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 {crab 2489 ∖ cdif 3165 {csn 3635 class class class wbr 4048 {copab 4109 × cxp 4678 ‘cfv 5277 (class class class)co 5954 1st c1st 6234 Fincfn 6837 1c1 7939 · cmul 7943 < clt 8120 − cmin 8256 / cdiv 8758 ℕcn 9049 2c2 9100 ℤcz 9385 ...cfz 10143 ∥ cdvds 12148 ℙcprime 12479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 ax-caucvg 8058 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-frec 6487 df-1o 6512 df-2o 6513 df-er 6630 df-en 6838 df-fin 6840 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-n0 9309 df-z 9386 df-uz 9662 df-q 9754 df-rp 9789 df-fz 10144 df-fl 10426 df-mod 10481 df-seqfrec 10606 df-exp 10697 df-cj 11203 df-re 11204 df-im 11205 df-rsqrt 11359 df-abs 11360 df-dvds 12149 df-prm 12480 |
| This theorem is referenced by: lgsquadlem1 15604 lgsquadlem2 15605 |
| Copyright terms: Public domain | W3C validator |