| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pcxqcl | GIF version | ||
| Description: The general prime count function is an integer or infinite. (Contributed by Jim Kingdon, 6-Jun-2025.) |
| Ref | Expression |
|---|---|
| pcxqcl | ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → ((𝑃 pCnt 𝑁) ∈ ℤ ∨ (𝑃 pCnt 𝑁) = +∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) ∧ 𝑁 = 0) → 𝑁 = 0) | |
| 2 | 1 | oveq2d 5978 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) ∧ 𝑁 = 0) → (𝑃 pCnt 𝑁) = (𝑃 pCnt 0)) |
| 3 | pc0 12712 | . . . . 5 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞) | |
| 4 | 3 | ad2antrr 488 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) ∧ 𝑁 = 0) → (𝑃 pCnt 0) = +∞) |
| 5 | 2, 4 | eqtrd 2239 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) ∧ 𝑁 = 0) → (𝑃 pCnt 𝑁) = +∞) |
| 6 | 5 | olcd 736 | . 2 ⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) ∧ 𝑁 = 0) → ((𝑃 pCnt 𝑁) ∈ ℤ ∨ (𝑃 pCnt 𝑁) = +∞)) |
| 7 | pcqcl 12714 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℚ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℤ) | |
| 8 | 7 | anassrs 400 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) ∧ 𝑁 ≠ 0) → (𝑃 pCnt 𝑁) ∈ ℤ) |
| 9 | 8 | orcd 735 | . 2 ⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) ∈ ℤ ∨ (𝑃 pCnt 𝑁) = +∞)) |
| 10 | 0z 9413 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 11 | zq 9777 | . . . . . 6 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ ℚ |
| 13 | qdceq 10419 | . . . . 5 ⊢ ((𝑁 ∈ ℚ ∧ 0 ∈ ℚ) → DECID 𝑁 = 0) | |
| 14 | 12, 13 | mpan2 425 | . . . 4 ⊢ (𝑁 ∈ ℚ → DECID 𝑁 = 0) |
| 15 | dcne 2388 | . . . 4 ⊢ (DECID 𝑁 = 0 ↔ (𝑁 = 0 ∨ 𝑁 ≠ 0)) | |
| 16 | 14, 15 | sylib 122 | . . 3 ⊢ (𝑁 ∈ ℚ → (𝑁 = 0 ∨ 𝑁 ≠ 0)) |
| 17 | 16 | adantl 277 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → (𝑁 = 0 ∨ 𝑁 ≠ 0)) |
| 18 | 6, 9, 17 | mpjaodan 800 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℚ) → ((𝑃 pCnt 𝑁) ∈ ℤ ∨ (𝑃 pCnt 𝑁) = +∞)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 (class class class)co 5962 0cc0 7955 +∞cpnf 8134 ℤcz 9402 ℚcq 9770 ℙcprime 12514 pCnt cpc 12692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 ax-caucvg 8075 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-isom 5294 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-frec 6495 df-1o 6520 df-2o 6521 df-er 6638 df-en 6846 df-sup 7107 df-inf 7108 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-n0 9326 df-z 9403 df-uz 9679 df-q 9771 df-rp 9806 df-fz 10161 df-fzo 10295 df-fl 10445 df-mod 10500 df-seqfrec 10625 df-exp 10716 df-cj 11238 df-re 11239 df-im 11240 df-rsqrt 11394 df-abs 11395 df-dvds 12184 df-gcd 12360 df-prm 12515 df-pc 12693 |
| This theorem is referenced by: pcadd2 12749 |
| Copyright terms: Public domain | W3C validator |