![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gsumfzfsum | GIF version |
Description: Relate a group sum on ℂfld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
gsumfzfsum.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
gsumfzfsum.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
gsumfzfsum.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
gsumfzfsum | ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumfzfsum.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | 1 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → 𝑀 ∈ ℤ) |
3 | gsumfzfsum.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℤ) |
5 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → 𝑁 < 𝑀) | |
6 | 2, 4, 5 | gsumfzfsumlem0 14074 | . 2 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
7 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℤ) |
8 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℤ) |
9 | 7 | zred 9439 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℝ) |
10 | 8 | zred 9439 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℝ) |
11 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → ¬ 𝑁 < 𝑀) | |
12 | 9, 10, 11 | nltled 8140 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ≤ 𝑁) |
13 | eluz2 9598 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
14 | 7, 8, 12, 13 | syl3anbrc 1183 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (ℤ≥‘𝑀)) |
15 | gsumfzfsum.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) | |
16 | 15 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) |
17 | 14, 16 | gsumfzfsumlemm 14075 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
18 | zdclt 9394 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁 < 𝑀) | |
19 | 3, 1, 18 | syl2anc 411 | . . 3 ⊢ (𝜑 → DECID 𝑁 < 𝑀) |
20 | exmiddc 837 | . . 3 ⊢ (DECID 𝑁 < 𝑀 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀)) | |
21 | 19, 20 | syl 14 | . 2 ⊢ (𝜑 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀)) |
22 | 6, 17, 21 | mpjaodan 799 | 1 ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ↦ cmpt 4090 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 < clt 8054 ≤ cle 8055 ℤcz 9317 ℤ≥cuz 9592 ...cfz 10074 Σcsu 11496 Σg cgsu 12868 ℂfldccnfld 14047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 ax-addf 7994 ax-mulf 7995 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-tp 3626 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-en 6795 df-dom 6796 df-fin 6797 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-z 9318 df-dec 9449 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-ihash 10847 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-sumdc 11497 df-struct 12620 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-starv 12710 df-0g 12869 df-igsum 12870 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-minusg 13076 df-mulg 13190 df-cmn 13356 df-mgp 13417 df-ring 13494 df-cring 13495 df-icnfld 14048 |
This theorem is referenced by: lgseisenlem4 15189 |
Copyright terms: Public domain | W3C validator |