| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzfsum | GIF version | ||
| Description: Relate a group sum on ℂfld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsumfzfsum.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gsumfzfsum.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| gsumfzfsum.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| gsumfzfsum | ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumfzfsum.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → 𝑀 ∈ ℤ) |
| 3 | gsumfzfsum.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℤ) |
| 5 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → 𝑁 < 𝑀) | |
| 6 | 2, 4, 5 | gsumfzfsumlem0 14392 | . 2 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
| 7 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℤ) |
| 8 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℤ) |
| 9 | 7 | zred 9502 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℝ) |
| 10 | 8 | zred 9502 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℝ) |
| 11 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → ¬ 𝑁 < 𝑀) | |
| 12 | 9, 10, 11 | nltled 8200 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ≤ 𝑁) |
| 13 | eluz2 9661 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
| 14 | 7, 8, 12, 13 | syl3anbrc 1184 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 15 | gsumfzfsum.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) | |
| 16 | 15 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) |
| 17 | 14, 16 | gsumfzfsumlemm 14393 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
| 18 | zdclt 9457 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁 < 𝑀) | |
| 19 | 3, 1, 18 | syl2anc 411 | . . 3 ⊢ (𝜑 → DECID 𝑁 < 𝑀) |
| 20 | exmiddc 838 | . . 3 ⊢ (DECID 𝑁 < 𝑀 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀)) | |
| 21 | 19, 20 | syl 14 | . 2 ⊢ (𝜑 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀)) |
| 22 | 6, 17, 21 | mpjaodan 800 | 1 ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2177 class class class wbr 4047 ↦ cmpt 4109 ‘cfv 5276 (class class class)co 5951 ℂcc 7930 < clt 8114 ≤ cle 8115 ℤcz 9379 ℤ≥cuz 9655 ...cfz 10137 Σcsu 11708 Σg cgsu 13133 ℂfldccnfld 14362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 ax-addf 8054 ax-mulf 8055 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-frec 6484 df-1o 6509 df-oadd 6513 df-er 6627 df-en 6835 df-dom 6836 df-fin 6837 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-dec 9512 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-seqfrec 10600 df-exp 10691 df-ihash 10928 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-clim 11634 df-sumdc 11709 df-struct 12878 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-plusg 12966 df-mulr 12967 df-starv 12968 df-tset 12972 df-ple 12973 df-ds 12975 df-unif 12976 df-0g 13134 df-igsum 13135 df-topgen 13136 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 df-mulg 13500 df-cmn 13666 df-mgp 13727 df-ring 13804 df-cring 13805 df-bl 14352 df-mopn 14353 df-fg 14355 df-metu 14356 df-cnfld 14363 |
| This theorem is referenced by: lgseisenlem4 15594 |
| Copyright terms: Public domain | W3C validator |