![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gsumfzfsum | GIF version |
Description: Relate a group sum on ℂfld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
gsumfzfsum.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
gsumfzfsum.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
gsumfzfsum.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
gsumfzfsum | ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumfzfsum.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | 1 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → 𝑀 ∈ ℤ) |
3 | gsumfzfsum.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℤ) |
5 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → 𝑁 < 𝑀) | |
6 | 2, 4, 5 | gsumfzfsumlem0 14085 | . 2 ⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
7 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℤ) |
8 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℤ) |
9 | 7 | zred 9442 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℝ) |
10 | 8 | zred 9442 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℝ) |
11 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → ¬ 𝑁 < 𝑀) | |
12 | 9, 10, 11 | nltled 8142 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ≤ 𝑁) |
13 | eluz2 9601 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) | |
14 | 7, 8, 12, 13 | syl3anbrc 1183 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (ℤ≥‘𝑀)) |
15 | gsumfzfsum.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) | |
16 | 15 | adantlr 477 | . . 3 ⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) |
17 | 14, 16 | gsumfzfsumlemm 14086 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
18 | zdclt 9397 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁 < 𝑀) | |
19 | 3, 1, 18 | syl2anc 411 | . . 3 ⊢ (𝜑 → DECID 𝑁 < 𝑀) |
20 | exmiddc 837 | . . 3 ⊢ (DECID 𝑁 < 𝑀 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀)) | |
21 | 19, 20 | syl 14 | . 2 ⊢ (𝜑 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀)) |
22 | 6, 17, 21 | mpjaodan 799 | 1 ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ↦ cmpt 4091 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 < clt 8056 ≤ cle 8057 ℤcz 9320 ℤ≥cuz 9595 ...cfz 10077 Σcsu 11499 Σg cgsu 12871 ℂfldccnfld 14055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 ax-addf 7996 ax-mulf 7997 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-tp 3627 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-en 6797 df-dom 6798 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-dec 9452 df-uz 9596 df-q 9688 df-rp 9723 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-ihash 10850 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 df-struct 12623 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-plusg 12711 df-mulr 12712 df-starv 12713 df-tset 12717 df-ple 12718 df-ds 12720 df-unif 12721 df-0g 12872 df-igsum 12873 df-topgen 12874 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-mulg 13193 df-cmn 13359 df-mgp 13420 df-ring 13497 df-cring 13498 df-bl 14045 df-mopn 14046 df-fg 14048 df-metu 14049 df-cnfld 14056 |
This theorem is referenced by: lgseisenlem4 15230 |
Copyright terms: Public domain | W3C validator |