ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ushgredgedg GIF version

Theorem ushgredgedg 15989
Description: In a simple hypergraph there is a 1-1 onto mapping between the indexed edges containing a fixed vertex and the set of edges containing this vertex. (Contributed by AV, 11-Dec-2020.)
Hypotheses
Ref Expression
ushgredgedg.e 𝐸 = (Edg‘𝐺)
ushgredgedg.i 𝐼 = (iEdg‘𝐺)
ushgredgedg.v 𝑉 = (Vtx‘𝐺)
ushgredgedg.a 𝐴 = {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}
ushgredgedg.b 𝐵 = {𝑒𝐸𝑁𝑒}
ushgredgedg.f 𝐹 = (𝑥𝐴 ↦ (𝐼𝑥))
Assertion
Ref Expression
ushgredgedg ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐵,𝑒   𝑒,𝐸,𝑖   𝑒,𝐺,𝑖,𝑥   𝑒,𝐼,𝑖,𝑥   𝑒,𝑁,𝑖,𝑥   𝑒,𝑉,𝑖,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑒,𝑖)   𝐵(𝑥,𝑖)   𝐸(𝑥)   𝐹(𝑥,𝑒,𝑖)

Proof of Theorem ushgredgedg
Dummy variables 𝑓 𝑗 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2209 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 ushgredgedg.i . . . . 5 𝐼 = (iEdg‘𝐺)
31, 2ushgrfm 15839 . . . 4 (𝐺 ∈ USHGraph → 𝐼:dom 𝐼1-1→{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤𝑝})
43adantr 276 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐼:dom 𝐼1-1→{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤𝑝})
5 ssrab2 3289 . . 3 {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} ⊆ dom 𝐼
6 f1ores 5563 . . 3 ((𝐼:dom 𝐼1-1→{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤𝑝} ∧ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} ⊆ dom 𝐼) → (𝐼 ↾ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}):{𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}))
74, 5, 6sylancl 413 . 2 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝐼 ↾ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}):{𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}))
8 ushgredgedg.f . . . . 5 𝐹 = (𝑥𝐴 ↦ (𝐼𝑥))
9 ushgredgedg.a . . . . . . 7 𝐴 = {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}
109a1i 9 . . . . . 6 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐴 = {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)})
11 eqidd 2210 . . . . . 6 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ 𝑥𝐴) → (𝐼𝑥) = (𝐼𝑥))
1210, 11mpteq12dva 4144 . . . . 5 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝑥𝐴 ↦ (𝐼𝑥)) = (𝑥 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} ↦ (𝐼𝑥)))
138, 12eqtrid 2254 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐹 = (𝑥 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} ↦ (𝐼𝑥)))
14 f1f 5507 . . . . . . . 8 (𝐼:dom 𝐼1-1→{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤𝑝} → 𝐼:dom 𝐼⟶{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤𝑝})
153, 14syl 14 . . . . . . 7 (𝐺 ∈ USHGraph → 𝐼:dom 𝐼⟶{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤𝑝})
165a1i 9 . . . . . . 7 (𝐺 ∈ USHGraph → {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} ⊆ dom 𝐼)
1715, 16feqresmpt 5661 . . . . . 6 (𝐺 ∈ USHGraph → (𝐼 ↾ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}) = (𝑥 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} ↦ (𝐼𝑥)))
1817adantr 276 . . . . 5 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝐼 ↾ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}) = (𝑥 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} ↦ (𝐼𝑥)))
1918eqcomd 2215 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝑥 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} ↦ (𝐼𝑥)) = (𝐼 ↾ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}))
2013, 19eqtrd 2242 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐹 = (𝐼 ↾ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}))
21 ushgruhgr 15845 . . . . . . . . 9 (𝐺 ∈ USHGraph → 𝐺 ∈ UHGraph)
22 eqid 2209 . . . . . . . . . 10 (iEdg‘𝐺) = (iEdg‘𝐺)
2322uhgrfun 15842 . . . . . . . . 9 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2421, 23syl 14 . . . . . . . 8 (𝐺 ∈ USHGraph → Fun (iEdg‘𝐺))
252funeqi 5315 . . . . . . . 8 (Fun 𝐼 ↔ Fun (iEdg‘𝐺))
2624, 25sylibr 134 . . . . . . 7 (𝐺 ∈ USHGraph → Fun 𝐼)
2726adantr 276 . . . . . 6 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → Fun 𝐼)
28 dfimafn 5655 . . . . . 6 ((Fun 𝐼 ∧ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} ⊆ dom 𝐼) → (𝐼 “ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}) = {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} (𝐼𝑗) = 𝑒})
2927, 5, 28sylancl 413 . . . . 5 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝐼 “ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}) = {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} (𝐼𝑗) = 𝑒})
30 fveq2 5603 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝐼𝑖) = (𝐼𝑗))
3130eleq2d 2279 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑁 ∈ (𝐼𝑖) ↔ 𝑁 ∈ (𝐼𝑗)))
3231elrab 2939 . . . . . . . . . 10 (𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} ↔ (𝑗 ∈ dom 𝐼𝑁 ∈ (𝐼𝑗)))
33 simpl 109 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ dom 𝐼𝑁 ∈ (𝐼𝑗)) → 𝑗 ∈ dom 𝐼)
34 fvelrn 5739 . . . . . . . . . . . . . . . . 17 ((Fun 𝐼𝑗 ∈ dom 𝐼) → (𝐼𝑗) ∈ ran 𝐼)
352eqcomi 2213 . . . . . . . . . . . . . . . . . . 19 (iEdg‘𝐺) = 𝐼
3635rneqi 4928 . . . . . . . . . . . . . . . . . 18 ran (iEdg‘𝐺) = ran 𝐼
3736eleq2i 2276 . . . . . . . . . . . . . . . . 17 ((𝐼𝑗) ∈ ran (iEdg‘𝐺) ↔ (𝐼𝑗) ∈ ran 𝐼)
3834, 37sylibr 134 . . . . . . . . . . . . . . . 16 ((Fun 𝐼𝑗 ∈ dom 𝐼) → (𝐼𝑗) ∈ ran (iEdg‘𝐺))
3927, 33, 38syl2an 289 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∈ (𝐼𝑗))) → (𝐼𝑗) ∈ ran (iEdg‘𝐺))
40393adant3 1022 . . . . . . . . . . . . . 14 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∈ (𝐼𝑗)) ∧ (𝐼𝑗) = 𝑓) → (𝐼𝑗) ∈ ran (iEdg‘𝐺))
41 eleq1 2272 . . . . . . . . . . . . . . . 16 (𝑓 = (𝐼𝑗) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼𝑗) ∈ ran (iEdg‘𝐺)))
4241eqcoms 2212 . . . . . . . . . . . . . . 15 ((𝐼𝑗) = 𝑓 → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼𝑗) ∈ ran (iEdg‘𝐺)))
43423ad2ant3 1025 . . . . . . . . . . . . . 14 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∈ (𝐼𝑗)) ∧ (𝐼𝑗) = 𝑓) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼𝑗) ∈ ran (iEdg‘𝐺)))
4440, 43mpbird 167 . . . . . . . . . . . . 13 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∈ (𝐼𝑗)) ∧ (𝐼𝑗) = 𝑓) → 𝑓 ∈ ran (iEdg‘𝐺))
45 ushgredgedg.e . . . . . . . . . . . . . . . . 17 𝐸 = (Edg‘𝐺)
46 edgvalg 15825 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ USHGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
4745, 46eqtrid 2254 . . . . . . . . . . . . . . . 16 (𝐺 ∈ USHGraph → 𝐸 = ran (iEdg‘𝐺))
4847eleq2d 2279 . . . . . . . . . . . . . . 15 (𝐺 ∈ USHGraph → (𝑓𝐸𝑓 ∈ ran (iEdg‘𝐺)))
4948adantr 276 . . . . . . . . . . . . . 14 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝑓𝐸𝑓 ∈ ran (iEdg‘𝐺)))
50493ad2ant1 1023 . . . . . . . . . . . . 13 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∈ (𝐼𝑗)) ∧ (𝐼𝑗) = 𝑓) → (𝑓𝐸𝑓 ∈ ran (iEdg‘𝐺)))
5144, 50mpbird 167 . . . . . . . . . . . 12 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∈ (𝐼𝑗)) ∧ (𝐼𝑗) = 𝑓) → 𝑓𝐸)
52 eleq2 2273 . . . . . . . . . . . . . . . 16 ((𝐼𝑗) = 𝑓 → (𝑁 ∈ (𝐼𝑗) ↔ 𝑁𝑓))
5352biimpcd 159 . . . . . . . . . . . . . . 15 (𝑁 ∈ (𝐼𝑗) → ((𝐼𝑗) = 𝑓𝑁𝑓))
5453adantl 277 . . . . . . . . . . . . . 14 ((𝑗 ∈ dom 𝐼𝑁 ∈ (𝐼𝑗)) → ((𝐼𝑗) = 𝑓𝑁𝑓))
5554a1i 9 . . . . . . . . . . . . 13 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → ((𝑗 ∈ dom 𝐼𝑁 ∈ (𝐼𝑗)) → ((𝐼𝑗) = 𝑓𝑁𝑓)))
56553imp 1198 . . . . . . . . . . . 12 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∈ (𝐼𝑗)) ∧ (𝐼𝑗) = 𝑓) → 𝑁𝑓)
5751, 56jca 306 . . . . . . . . . . 11 (((𝐺 ∈ USHGraph ∧ 𝑁𝑉) ∧ (𝑗 ∈ dom 𝐼𝑁 ∈ (𝐼𝑗)) ∧ (𝐼𝑗) = 𝑓) → (𝑓𝐸𝑁𝑓))
58573exp 1207 . . . . . . . . . 10 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → ((𝑗 ∈ dom 𝐼𝑁 ∈ (𝐼𝑗)) → ((𝐼𝑗) = 𝑓 → (𝑓𝐸𝑁𝑓))))
5932, 58biimtrid 152 . . . . . . . . 9 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} → ((𝐼𝑗) = 𝑓 → (𝑓𝐸𝑁𝑓))))
6059rexlimdv 2627 . . . . . . . 8 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} (𝐼𝑗) = 𝑓 → (𝑓𝐸𝑁𝑓)))
6124funfnd 5325 . . . . . . . . . . . . 13 (𝐺 ∈ USHGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
62 fvelrnb 5654 . . . . . . . . . . . . 13 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓))
6361, 62syl 14 . . . . . . . . . . . 12 (𝐺 ∈ USHGraph → (𝑓 ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓))
6435dmeqi 4901 . . . . . . . . . . . . . . . . . . . . . . 23 dom (iEdg‘𝐺) = dom 𝐼
6564eleq2i 2276 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ dom (iEdg‘𝐺) ↔ 𝑗 ∈ dom 𝐼)
6665biimpi 120 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ dom (iEdg‘𝐺) → 𝑗 ∈ dom 𝐼)
6766adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → 𝑗 ∈ dom 𝐼)
6867adantl 277 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ USHGraph ∧ 𝑁𝑓) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑗 ∈ dom 𝐼)
6935fveq1i 5604 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((iEdg‘𝐺)‘𝑗) = (𝐼𝑗)
7069eqeq2i 2220 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 = ((iEdg‘𝐺)‘𝑗) ↔ 𝑓 = (𝐼𝑗))
7170biimpi 120 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 = ((iEdg‘𝐺)‘𝑗) → 𝑓 = (𝐼𝑗))
7271eqcoms 2212 . . . . . . . . . . . . . . . . . . . . . . . 24 (((iEdg‘𝐺)‘𝑗) = 𝑓𝑓 = (𝐼𝑗))
7372eleq2d 2279 . . . . . . . . . . . . . . . . . . . . . . 23 (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝑁𝑓𝑁 ∈ (𝐼𝑗)))
7473biimpcd 159 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁𝑓 → (((iEdg‘𝐺)‘𝑗) = 𝑓𝑁 ∈ (𝐼𝑗)))
7574adantl 277 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ USHGraph ∧ 𝑁𝑓) → (((iEdg‘𝐺)‘𝑗) = 𝑓𝑁 ∈ (𝐼𝑗)))
7675adantld 278 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ USHGraph ∧ 𝑁𝑓) → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → 𝑁 ∈ (𝐼𝑗)))
7776imp 124 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ USHGraph ∧ 𝑁𝑓) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑁 ∈ (𝐼𝑗))
7868, 77jca 306 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ USHGraph ∧ 𝑁𝑓) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝑗 ∈ dom 𝐼𝑁 ∈ (𝐼𝑗)))
7978, 32sylibr 134 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ USHGraph ∧ 𝑁𝑓) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)})
8069eqeq1i 2217 . . . . . . . . . . . . . . . . . . . 20 (((iEdg‘𝐺)‘𝑗) = 𝑓 ↔ (𝐼𝑗) = 𝑓)
8180biimpi 120 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼𝑗) = 𝑓)
8281adantl 277 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝐼𝑗) = 𝑓)
8382adantl 277 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ USHGraph ∧ 𝑁𝑓) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝐼𝑗) = 𝑓)
8479, 83jca 306 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USHGraph ∧ 𝑁𝑓) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} ∧ (𝐼𝑗) = 𝑓))
8584ex 115 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USHGraph ∧ 𝑁𝑓) → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} ∧ (𝐼𝑗) = 𝑓)))
8685reximdv2 2609 . . . . . . . . . . . . . 14 ((𝐺 ∈ USHGraph ∧ 𝑁𝑓) → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} (𝐼𝑗) = 𝑓))
8786ex 115 . . . . . . . . . . . . 13 (𝐺 ∈ USHGraph → (𝑁𝑓 → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} (𝐼𝑗) = 𝑓)))
8887com23 78 . . . . . . . . . . . 12 (𝐺 ∈ USHGraph → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝑁𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} (𝐼𝑗) = 𝑓)))
8963, 88sylbid 150 . . . . . . . . . . 11 (𝐺 ∈ USHGraph → (𝑓 ∈ ran (iEdg‘𝐺) → (𝑁𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} (𝐼𝑗) = 𝑓)))
9048, 89sylbid 150 . . . . . . . . . 10 (𝐺 ∈ USHGraph → (𝑓𝐸 → (𝑁𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} (𝐼𝑗) = 𝑓)))
9190impd 254 . . . . . . . . 9 (𝐺 ∈ USHGraph → ((𝑓𝐸𝑁𝑓) → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} (𝐼𝑗) = 𝑓))
9291adantr 276 . . . . . . . 8 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → ((𝑓𝐸𝑁𝑓) → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} (𝐼𝑗) = 𝑓))
9360, 92impbid 129 . . . . . . 7 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} (𝐼𝑗) = 𝑓 ↔ (𝑓𝐸𝑁𝑓)))
94 vex 2782 . . . . . . . 8 𝑓 ∈ V
95 eqeq2 2219 . . . . . . . . 9 (𝑒 = 𝑓 → ((𝐼𝑗) = 𝑒 ↔ (𝐼𝑗) = 𝑓))
9695rexbidv 2511 . . . . . . . 8 (𝑒 = 𝑓 → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} (𝐼𝑗) = 𝑒 ↔ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} (𝐼𝑗) = 𝑓))
9794, 96elab 2927 . . . . . . 7 (𝑓 ∈ {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} (𝐼𝑗) = 𝑒} ↔ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} (𝐼𝑗) = 𝑓)
98 eleq2 2273 . . . . . . . 8 (𝑒 = 𝑓 → (𝑁𝑒𝑁𝑓))
99 ushgredgedg.b . . . . . . . 8 𝐵 = {𝑒𝐸𝑁𝑒}
10098, 99elrab2 2942 . . . . . . 7 (𝑓𝐵 ↔ (𝑓𝐸𝑁𝑓))
10193, 97, 1003bitr4g 223 . . . . . 6 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝑓 ∈ {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} (𝐼𝑗) = 𝑒} ↔ 𝑓𝐵))
102101eqrdv 2207 . . . . 5 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)} (𝐼𝑗) = 𝑒} = 𝐵)
10329, 102eqtrd 2242 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝐼 “ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}) = 𝐵)
104103eqcomd 2215 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐵 = (𝐼 “ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}))
10520, 10, 104f1oeq123d 5542 . 2 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → (𝐹:𝐴1-1-onto𝐵 ↔ (𝐼 ↾ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}):{𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼𝑁 ∈ (𝐼𝑖)})))
1067, 105mpbird 167 1 ((𝐺 ∈ USHGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wex 1518  wcel 2180  {cab 2195  wrex 2489  {crab 2492  wss 3177  𝒫 cpw 3629  cmpt 4124  dom cdm 4696  ran crn 4697  cres 4698  cima 4699  Fun wfun 5288   Fn wfn 5289  wf 5290  1-1wf1 5291  1-1-ontowf1o 5293  cfv 5294  Vtxcvtx 15778  iEdgciedg 15779  Edgcedg 15823  UHGraphcuhgr 15832  USHGraphcushgr 15833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-base 13004  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-edg 15824  df-uhgrm 15834  df-ushgrm 15835
This theorem is referenced by:  usgredgedg  15990
  Copyright terms: Public domain W3C validator