| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2209 |
. . . . 5
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 2 | | ushgredgedg.i |
. . . . 5
⊢ 𝐼 = (iEdg‘𝐺) |
| 3 | 1, 2 | ushgrfm 15839 |
. . . 4
⊢ (𝐺 ∈ USHGraph → 𝐼:dom 𝐼–1-1→{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤 ∈ 𝑝}) |
| 4 | 3 | adantr 276 |
. . 3
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐼:dom 𝐼–1-1→{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤 ∈ 𝑝}) |
| 5 | | ssrab2 3289 |
. . 3
⊢ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} ⊆ dom 𝐼 |
| 6 | | f1ores 5563 |
. . 3
⊢ ((𝐼:dom 𝐼–1-1→{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤 ∈ 𝑝} ∧ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} ⊆ dom 𝐼) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)}):{𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)})) |
| 7 | 4, 5, 6 | sylancl 413 |
. 2
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)}):{𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)})) |
| 8 | | ushgredgedg.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐼‘𝑥)) |
| 9 | | ushgredgedg.a |
. . . . . . 7
⊢ 𝐴 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} |
| 10 | 9 | a1i 9 |
. . . . . 6
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐴 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)}) |
| 11 | | eqidd 2210 |
. . . . . 6
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → (𝐼‘𝑥) = (𝐼‘𝑥)) |
| 12 | 10, 11 | mpteq12dva 4144 |
. . . . 5
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝑥 ∈ 𝐴 ↦ (𝐼‘𝑥)) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} ↦ (𝐼‘𝑥))) |
| 13 | 8, 12 | eqtrid 2254 |
. . . 4
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} ↦ (𝐼‘𝑥))) |
| 14 | | f1f 5507 |
. . . . . . . 8
⊢ (𝐼:dom 𝐼–1-1→{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤 ∈ 𝑝} → 𝐼:dom 𝐼⟶{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤 ∈ 𝑝}) |
| 15 | 3, 14 | syl 14 |
. . . . . . 7
⊢ (𝐺 ∈ USHGraph → 𝐼:dom 𝐼⟶{𝑝 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑤 𝑤 ∈ 𝑝}) |
| 16 | 5 | a1i 9 |
. . . . . . 7
⊢ (𝐺 ∈ USHGraph → {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} ⊆ dom 𝐼) |
| 17 | 15, 16 | feqresmpt 5661 |
. . . . . 6
⊢ (𝐺 ∈ USHGraph → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)}) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} ↦ (𝐼‘𝑥))) |
| 18 | 17 | adantr 276 |
. . . . 5
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)}) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} ↦ (𝐼‘𝑥))) |
| 19 | 18 | eqcomd 2215 |
. . . 4
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} ↦ (𝐼‘𝑥)) = (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)})) |
| 20 | 13, 19 | eqtrd 2242 |
. . 3
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 = (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)})) |
| 21 | | ushgruhgr 15845 |
. . . . . . . . 9
⊢ (𝐺 ∈ USHGraph → 𝐺 ∈
UHGraph) |
| 22 | | eqid 2209 |
. . . . . . . . . 10
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
| 23 | 22 | uhgrfun 15842 |
. . . . . . . . 9
⊢ (𝐺 ∈ UHGraph → Fun
(iEdg‘𝐺)) |
| 24 | 21, 23 | syl 14 |
. . . . . . . 8
⊢ (𝐺 ∈ USHGraph → Fun
(iEdg‘𝐺)) |
| 25 | 2 | funeqi 5315 |
. . . . . . . 8
⊢ (Fun
𝐼 ↔ Fun
(iEdg‘𝐺)) |
| 26 | 24, 25 | sylibr 134 |
. . . . . . 7
⊢ (𝐺 ∈ USHGraph → Fun
𝐼) |
| 27 | 26 | adantr 276 |
. . . . . 6
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → Fun 𝐼) |
| 28 | | dfimafn 5655 |
. . . . . 6
⊢ ((Fun
𝐼 ∧ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} ⊆ dom 𝐼) → (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)}) = {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} (𝐼‘𝑗) = 𝑒}) |
| 29 | 27, 5, 28 | sylancl 413 |
. . . . 5
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)}) = {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} (𝐼‘𝑗) = 𝑒}) |
| 30 | | fveq2 5603 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝐼‘𝑖) = (𝐼‘𝑗)) |
| 31 | 30 | eleq2d 2279 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (𝑁 ∈ (𝐼‘𝑖) ↔ 𝑁 ∈ (𝐼‘𝑗))) |
| 32 | 31 | elrab 2939 |
. . . . . . . . . 10
⊢ (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} ↔ (𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ (𝐼‘𝑗))) |
| 33 | | simpl 109 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ (𝐼‘𝑗)) → 𝑗 ∈ dom 𝐼) |
| 34 | | fvelrn 5739 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
𝐼 ∧ 𝑗 ∈ dom 𝐼) → (𝐼‘𝑗) ∈ ran 𝐼) |
| 35 | 2 | eqcomi 2213 |
. . . . . . . . . . . . . . . . . . 19
⊢
(iEdg‘𝐺) =
𝐼 |
| 36 | 35 | rneqi 4928 |
. . . . . . . . . . . . . . . . . 18
⊢ ran
(iEdg‘𝐺) = ran 𝐼 |
| 37 | 36 | eleq2i 2276 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼‘𝑗) ∈ ran (iEdg‘𝐺) ↔ (𝐼‘𝑗) ∈ ran 𝐼) |
| 38 | 34, 37 | sylibr 134 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝐼 ∧ 𝑗 ∈ dom 𝐼) → (𝐼‘𝑗) ∈ ran (iEdg‘𝐺)) |
| 39 | 27, 33, 38 | syl2an 289 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ (𝐼‘𝑗))) → (𝐼‘𝑗) ∈ ran (iEdg‘𝐺)) |
| 40 | 39 | 3adant3 1022 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ (𝐼‘𝑗)) ∧ (𝐼‘𝑗) = 𝑓) → (𝐼‘𝑗) ∈ ran (iEdg‘𝐺)) |
| 41 | | eleq1 2272 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝐼‘𝑗) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼‘𝑗) ∈ ran (iEdg‘𝐺))) |
| 42 | 41 | eqcoms 2212 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼‘𝑗) = 𝑓 → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼‘𝑗) ∈ ran (iEdg‘𝐺))) |
| 43 | 42 | 3ad2ant3 1025 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ (𝐼‘𝑗)) ∧ (𝐼‘𝑗) = 𝑓) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼‘𝑗) ∈ ran (iEdg‘𝐺))) |
| 44 | 40, 43 | mpbird 167 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ (𝐼‘𝑗)) ∧ (𝐼‘𝑗) = 𝑓) → 𝑓 ∈ ran (iEdg‘𝐺)) |
| 45 | | ushgredgedg.e |
. . . . . . . . . . . . . . . . 17
⊢ 𝐸 = (Edg‘𝐺) |
| 46 | | edgvalg 15825 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ USHGraph →
(Edg‘𝐺) = ran
(iEdg‘𝐺)) |
| 47 | 45, 46 | eqtrid 2254 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ USHGraph → 𝐸 = ran (iEdg‘𝐺)) |
| 48 | 47 | eleq2d 2279 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ USHGraph → (𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran (iEdg‘𝐺))) |
| 49 | 48 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran (iEdg‘𝐺))) |
| 50 | 49 | 3ad2ant1 1023 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ (𝐼‘𝑗)) ∧ (𝐼‘𝑗) = 𝑓) → (𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran (iEdg‘𝐺))) |
| 51 | 44, 50 | mpbird 167 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ (𝐼‘𝑗)) ∧ (𝐼‘𝑗) = 𝑓) → 𝑓 ∈ 𝐸) |
| 52 | | eleq2 2273 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼‘𝑗) = 𝑓 → (𝑁 ∈ (𝐼‘𝑗) ↔ 𝑁 ∈ 𝑓)) |
| 53 | 52 | biimpcd 159 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ (𝐼‘𝑗) → ((𝐼‘𝑗) = 𝑓 → 𝑁 ∈ 𝑓)) |
| 54 | 53 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ (𝐼‘𝑗)) → ((𝐼‘𝑗) = 𝑓 → 𝑁 ∈ 𝑓)) |
| 55 | 54 | a1i 9 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → ((𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ (𝐼‘𝑗)) → ((𝐼‘𝑗) = 𝑓 → 𝑁 ∈ 𝑓))) |
| 56 | 55 | 3imp 1198 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ (𝐼‘𝑗)) ∧ (𝐼‘𝑗) = 𝑓) → 𝑁 ∈ 𝑓) |
| 57 | 51, 56 | jca 306 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ (𝐼‘𝑗)) ∧ (𝐼‘𝑗) = 𝑓) → (𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓)) |
| 58 | 57 | 3exp 1207 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → ((𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ (𝐼‘𝑗)) → ((𝐼‘𝑗) = 𝑓 → (𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓)))) |
| 59 | 32, 58 | biimtrid 152 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} → ((𝐼‘𝑗) = 𝑓 → (𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓)))) |
| 60 | 59 | rexlimdv 2627 |
. . . . . . . 8
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} (𝐼‘𝑗) = 𝑓 → (𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓))) |
| 61 | 24 | funfnd 5325 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USHGraph →
(iEdg‘𝐺) Fn dom
(iEdg‘𝐺)) |
| 62 | | fvelrnb 5654 |
. . . . . . . . . . . . 13
⊢
((iEdg‘𝐺) Fn
dom (iEdg‘𝐺) →
(𝑓 ∈ ran
(iEdg‘𝐺) ↔
∃𝑗 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓)) |
| 63 | 61, 62 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USHGraph → (𝑓 ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓)) |
| 64 | 35 | dmeqi 4901 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ dom
(iEdg‘𝐺) = dom 𝐼 |
| 65 | 64 | eleq2i 2276 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ dom (iEdg‘𝐺) ↔ 𝑗 ∈ dom 𝐼) |
| 66 | 65 | biimpi 120 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ dom (iEdg‘𝐺) → 𝑗 ∈ dom 𝐼) |
| 67 | 66 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → 𝑗 ∈ dom 𝐼) |
| 68 | 67 | adantl 277 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑗 ∈ dom 𝐼) |
| 69 | 35 | fveq1i 5604 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((iEdg‘𝐺)‘𝑗) = (𝐼‘𝑗) |
| 70 | 69 | eqeq2i 2220 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 = ((iEdg‘𝐺)‘𝑗) ↔ 𝑓 = (𝐼‘𝑗)) |
| 71 | 70 | biimpi 120 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 = ((iEdg‘𝐺)‘𝑗) → 𝑓 = (𝐼‘𝑗)) |
| 72 | 71 | eqcoms 2212 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((iEdg‘𝐺)‘𝑗) = 𝑓 → 𝑓 = (𝐼‘𝑗)) |
| 73 | 72 | eleq2d 2279 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝑁 ∈ 𝑓 ↔ 𝑁 ∈ (𝐼‘𝑗))) |
| 74 | 73 | biimpcd 159 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ 𝑓 → (((iEdg‘𝐺)‘𝑗) = 𝑓 → 𝑁 ∈ (𝐼‘𝑗))) |
| 75 | 74 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓) → (((iEdg‘𝐺)‘𝑗) = 𝑓 → 𝑁 ∈ (𝐼‘𝑗))) |
| 76 | 75 | adantld 278 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓) → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → 𝑁 ∈ (𝐼‘𝑗))) |
| 77 | 76 | imp 124 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑁 ∈ (𝐼‘𝑗)) |
| 78 | 68, 77 | jca 306 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝑗 ∈ dom 𝐼 ∧ 𝑁 ∈ (𝐼‘𝑗))) |
| 79 | 78, 32 | sylibr 134 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)}) |
| 80 | 69 | eqeq1i 2217 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((iEdg‘𝐺)‘𝑗) = 𝑓 ↔ (𝐼‘𝑗) = 𝑓) |
| 81 | 80 | biimpi 120 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼‘𝑗) = 𝑓) |
| 82 | 81 | adantl 277 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝐼‘𝑗) = 𝑓) |
| 83 | 82 | adantl 277 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝐼‘𝑗) = 𝑓) |
| 84 | 79, 83 | jca 306 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} ∧ (𝐼‘𝑗) = 𝑓)) |
| 85 | 84 | ex 115 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓) → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} ∧ (𝐼‘𝑗) = 𝑓))) |
| 86 | 85 | reximdv2 2609 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑓) → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} (𝐼‘𝑗) = 𝑓)) |
| 87 | 86 | ex 115 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USHGraph → (𝑁 ∈ 𝑓 → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} (𝐼‘𝑗) = 𝑓))) |
| 88 | 87 | com23 78 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USHGraph →
(∃𝑗 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝑁 ∈ 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} (𝐼‘𝑗) = 𝑓))) |
| 89 | 63, 88 | sylbid 150 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USHGraph → (𝑓 ∈ ran (iEdg‘𝐺) → (𝑁 ∈ 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} (𝐼‘𝑗) = 𝑓))) |
| 90 | 48, 89 | sylbid 150 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USHGraph → (𝑓 ∈ 𝐸 → (𝑁 ∈ 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} (𝐼‘𝑗) = 𝑓))) |
| 91 | 90 | impd 254 |
. . . . . . . . 9
⊢ (𝐺 ∈ USHGraph → ((𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓) → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} (𝐼‘𝑗) = 𝑓)) |
| 92 | 91 | adantr 276 |
. . . . . . . 8
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → ((𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓) → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} (𝐼‘𝑗) = 𝑓)) |
| 93 | 60, 92 | impbid 129 |
. . . . . . 7
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} (𝐼‘𝑗) = 𝑓 ↔ (𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓))) |
| 94 | | vex 2782 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
| 95 | | eqeq2 2219 |
. . . . . . . . 9
⊢ (𝑒 = 𝑓 → ((𝐼‘𝑗) = 𝑒 ↔ (𝐼‘𝑗) = 𝑓)) |
| 96 | 95 | rexbidv 2511 |
. . . . . . . 8
⊢ (𝑒 = 𝑓 → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} (𝐼‘𝑗) = 𝑒 ↔ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} (𝐼‘𝑗) = 𝑓)) |
| 97 | 94, 96 | elab 2927 |
. . . . . . 7
⊢ (𝑓 ∈ {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} (𝐼‘𝑗) = 𝑒} ↔ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} (𝐼‘𝑗) = 𝑓) |
| 98 | | eleq2 2273 |
. . . . . . . 8
⊢ (𝑒 = 𝑓 → (𝑁 ∈ 𝑒 ↔ 𝑁 ∈ 𝑓)) |
| 99 | | ushgredgedg.b |
. . . . . . . 8
⊢ 𝐵 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} |
| 100 | 98, 99 | elrab2 2942 |
. . . . . . 7
⊢ (𝑓 ∈ 𝐵 ↔ (𝑓 ∈ 𝐸 ∧ 𝑁 ∈ 𝑓)) |
| 101 | 93, 97, 100 | 3bitr4g 223 |
. . . . . 6
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝑓 ∈ {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} (𝐼‘𝑗) = 𝑒} ↔ 𝑓 ∈ 𝐵)) |
| 102 | 101 | eqrdv 2207 |
. . . . 5
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)} (𝐼‘𝑗) = 𝑒} = 𝐵) |
| 103 | 29, 102 | eqtrd 2242 |
. . . 4
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)}) = 𝐵) |
| 104 | 103 | eqcomd 2215 |
. . 3
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐵 = (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)})) |
| 105 | 20, 10, 104 | f1oeq123d 5542 |
. 2
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)}):{𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∈ (𝐼‘𝑖)}))) |
| 106 | 7, 105 | mpbird 167 |
1
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐹:𝐴–1-1-onto→𝐵) |