MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem13 Structured version   Visualization version   GIF version

Theorem 4sqlem13 16658
Description: Lemma for 4sq 16665. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
Assertion
Ref Expression
4sqlem13 (𝜑 → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑖,𝑛,𝑀   𝑛,𝑁   𝑃,𝑖,𝑛   𝜑,𝑛   𝑆,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem13
Dummy variables 𝑘 𝑣 𝑢 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . 3 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
2 4sq.2 . . 3 (𝜑𝑁 ∈ ℕ)
3 4sq.3 . . 3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4 4sq.4 . . 3 (𝜑𝑃 ∈ ℙ)
5 eqid 2738 . . 3 {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
6 eqid 2738 . . 3 (𝑣 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ↦ ((𝑃 − 1) − 𝑣)) = (𝑣 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ↦ ((𝑃 − 1) − 𝑣))
71, 2, 3, 4, 5, 64sqlem12 16657 . 2 (𝜑 → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))
8 simplrl 774 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 ∈ (1...(𝑃 − 1)))
9 elfznn 13285 . . . . . . . 8 (𝑘 ∈ (1...(𝑃 − 1)) → 𝑘 ∈ ℕ)
108, 9syl 17 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 ∈ ℕ)
11 simpr 485 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))
12 abs1 15009 . . . . . . . . . . . 12 (abs‘1) = 1
1312oveq1i 7285 . . . . . . . . . . 11 ((abs‘1)↑2) = (1↑2)
14 sq1 13912 . . . . . . . . . . 11 (1↑2) = 1
1513, 14eqtri 2766 . . . . . . . . . 10 ((abs‘1)↑2) = 1
1615oveq2i 7286 . . . . . . . . 9 (((abs‘𝑢)↑2) + ((abs‘1)↑2)) = (((abs‘𝑢)↑2) + 1)
17 simplrr 775 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑢 ∈ ℤ[i])
18 1z 12350 . . . . . . . . . . 11 1 ∈ ℤ
19 zgz 16634 . . . . . . . . . . 11 (1 ∈ ℤ → 1 ∈ ℤ[i])
2018, 19ax-mp 5 . . . . . . . . . 10 1 ∈ ℤ[i]
2114sqlem4a 16652 . . . . . . . . . 10 ((𝑢 ∈ ℤ[i] ∧ 1 ∈ ℤ[i]) → (((abs‘𝑢)↑2) + ((abs‘1)↑2)) ∈ 𝑆)
2217, 20, 21sylancl 586 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (((abs‘𝑢)↑2) + ((abs‘1)↑2)) ∈ 𝑆)
2316, 22eqeltrrid 2844 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (((abs‘𝑢)↑2) + 1) ∈ 𝑆)
2411, 23eqeltrrd 2840 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑘 · 𝑃) ∈ 𝑆)
25 oveq1 7282 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑖 · 𝑃) = (𝑘 · 𝑃))
2625eleq1d 2823 . . . . . . . 8 (𝑖 = 𝑘 → ((𝑖 · 𝑃) ∈ 𝑆 ↔ (𝑘 · 𝑃) ∈ 𝑆))
27 4sq.6 . . . . . . . 8 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
2826, 27elrab2 3627 . . . . . . 7 (𝑘𝑇 ↔ (𝑘 ∈ ℕ ∧ (𝑘 · 𝑃) ∈ 𝑆))
2910, 24, 28sylanbrc 583 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘𝑇)
3029ne0d 4269 . . . . 5 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑇 ≠ ∅)
3127ssrab3 4015 . . . . . . . 8 𝑇 ⊆ ℕ
32 4sq.7 . . . . . . . . 9 𝑀 = inf(𝑇, ℝ, < )
33 nnuz 12621 . . . . . . . . . . 11 ℕ = (ℤ‘1)
3431, 33sseqtri 3957 . . . . . . . . . 10 𝑇 ⊆ (ℤ‘1)
35 infssuzcl 12672 . . . . . . . . . 10 ((𝑇 ⊆ (ℤ‘1) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇)
3634, 30, 35sylancr 587 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → inf(𝑇, ℝ, < ) ∈ 𝑇)
3732, 36eqeltrid 2843 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀𝑇)
3831, 37sselid 3919 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀 ∈ ℕ)
3938nnred 11988 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀 ∈ ℝ)
4010nnred 11988 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 ∈ ℝ)
414ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑃 ∈ ℙ)
42 prmnn 16379 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
4341, 42syl 17 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑃 ∈ ℕ)
4443nnred 11988 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑃 ∈ ℝ)
45 infssuzle 12671 . . . . . . . 8 ((𝑇 ⊆ (ℤ‘1) ∧ 𝑘𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑘)
4634, 29, 45sylancr 587 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → inf(𝑇, ℝ, < ) ≤ 𝑘)
4732, 46eqbrtrid 5109 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀𝑘)
48 prmz 16380 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
4941, 48syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑃 ∈ ℤ)
50 elfzm11 13327 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑘 ∈ (1...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑃)))
5118, 49, 50sylancr 587 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑘 ∈ (1...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑃)))
528, 51mpbid 231 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑃))
5352simp3d 1143 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 < 𝑃)
5439, 40, 44, 47, 53lelttrd 11133 . . . . 5 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀 < 𝑃)
5530, 54jca 512 . . . 4 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃))
5655ex 413 . . 3 ((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) → ((((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃) → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃)))
5756rexlimdvva 3223 . 2 (𝜑 → (∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃) → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃)))
587, 57mpd 15 1 (𝜑 → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wrex 3065  {crab 3068  wss 3887  c0 4256   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  infcinf 9200  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  cn 11973  2c2 12028  cz 12319  cuz 12582  ...cfz 13239   mod cmo 13589  cexp 13782  abscabs 14945  cprime 16376  ℤ[i]cgz 16630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-gz 16631
This theorem is referenced by:  4sqlem14  16659  4sqlem17  16662  4sqlem18  16663
  Copyright terms: Public domain W3C validator