MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem13 Structured version   Visualization version   GIF version

Theorem 4sqlem13 16829
Description: Lemma for 4sq 16836. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
Assertion
Ref Expression
4sqlem13 (𝜑 → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑖,𝑛,𝑀   𝑛,𝑁   𝑃,𝑖,𝑛   𝜑,𝑛   𝑆,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem13
Dummy variables 𝑘 𝑣 𝑢 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . 3 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
2 4sq.2 . . 3 (𝜑𝑁 ∈ ℕ)
3 4sq.3 . . 3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4 4sq.4 . . 3 (𝜑𝑃 ∈ ℙ)
5 eqid 2736 . . 3 {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
6 eqid 2736 . . 3 (𝑣 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ↦ ((𝑃 − 1) − 𝑣)) = (𝑣 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ↦ ((𝑃 − 1) − 𝑣))
71, 2, 3, 4, 5, 64sqlem12 16828 . 2 (𝜑 → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))
8 simplrl 775 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 ∈ (1...(𝑃 − 1)))
9 elfznn 13470 . . . . . . . 8 (𝑘 ∈ (1...(𝑃 − 1)) → 𝑘 ∈ ℕ)
108, 9syl 17 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 ∈ ℕ)
11 simpr 485 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))
12 abs1 15182 . . . . . . . . . . . 12 (abs‘1) = 1
1312oveq1i 7367 . . . . . . . . . . 11 ((abs‘1)↑2) = (1↑2)
14 sq1 14099 . . . . . . . . . . 11 (1↑2) = 1
1513, 14eqtri 2764 . . . . . . . . . 10 ((abs‘1)↑2) = 1
1615oveq2i 7368 . . . . . . . . 9 (((abs‘𝑢)↑2) + ((abs‘1)↑2)) = (((abs‘𝑢)↑2) + 1)
17 simplrr 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑢 ∈ ℤ[i])
18 1z 12533 . . . . . . . . . . 11 1 ∈ ℤ
19 zgz 16805 . . . . . . . . . . 11 (1 ∈ ℤ → 1 ∈ ℤ[i])
2018, 19ax-mp 5 . . . . . . . . . 10 1 ∈ ℤ[i]
2114sqlem4a 16823 . . . . . . . . . 10 ((𝑢 ∈ ℤ[i] ∧ 1 ∈ ℤ[i]) → (((abs‘𝑢)↑2) + ((abs‘1)↑2)) ∈ 𝑆)
2217, 20, 21sylancl 586 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (((abs‘𝑢)↑2) + ((abs‘1)↑2)) ∈ 𝑆)
2316, 22eqeltrrid 2843 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (((abs‘𝑢)↑2) + 1) ∈ 𝑆)
2411, 23eqeltrrd 2839 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑘 · 𝑃) ∈ 𝑆)
25 oveq1 7364 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑖 · 𝑃) = (𝑘 · 𝑃))
2625eleq1d 2822 . . . . . . . 8 (𝑖 = 𝑘 → ((𝑖 · 𝑃) ∈ 𝑆 ↔ (𝑘 · 𝑃) ∈ 𝑆))
27 4sq.6 . . . . . . . 8 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
2826, 27elrab2 3648 . . . . . . 7 (𝑘𝑇 ↔ (𝑘 ∈ ℕ ∧ (𝑘 · 𝑃) ∈ 𝑆))
2910, 24, 28sylanbrc 583 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘𝑇)
3029ne0d 4295 . . . . 5 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑇 ≠ ∅)
3127ssrab3 4040 . . . . . . . 8 𝑇 ⊆ ℕ
32 4sq.7 . . . . . . . . 9 𝑀 = inf(𝑇, ℝ, < )
33 nnuz 12806 . . . . . . . . . . 11 ℕ = (ℤ‘1)
3431, 33sseqtri 3980 . . . . . . . . . 10 𝑇 ⊆ (ℤ‘1)
35 infssuzcl 12857 . . . . . . . . . 10 ((𝑇 ⊆ (ℤ‘1) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇)
3634, 30, 35sylancr 587 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → inf(𝑇, ℝ, < ) ∈ 𝑇)
3732, 36eqeltrid 2842 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀𝑇)
3831, 37sselid 3942 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀 ∈ ℕ)
3938nnred 12168 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀 ∈ ℝ)
4010nnred 12168 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 ∈ ℝ)
414ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑃 ∈ ℙ)
42 prmnn 16550 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
4341, 42syl 17 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑃 ∈ ℕ)
4443nnred 12168 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑃 ∈ ℝ)
45 infssuzle 12856 . . . . . . . 8 ((𝑇 ⊆ (ℤ‘1) ∧ 𝑘𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑘)
4634, 29, 45sylancr 587 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → inf(𝑇, ℝ, < ) ≤ 𝑘)
4732, 46eqbrtrid 5140 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀𝑘)
48 prmz 16551 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
4941, 48syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑃 ∈ ℤ)
50 elfzm11 13512 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑘 ∈ (1...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑃)))
5118, 49, 50sylancr 587 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑘 ∈ (1...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑃)))
528, 51mpbid 231 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑃))
5352simp3d 1144 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 < 𝑃)
5439, 40, 44, 47, 53lelttrd 11313 . . . . 5 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀 < 𝑃)
5530, 54jca 512 . . . 4 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃))
5655ex 413 . . 3 ((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) → ((((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃) → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃)))
5756rexlimdvva 3205 . 2 (𝜑 → (∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃) → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃)))
587, 57mpd 15 1 (𝜑 → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cab 2713  wne 2943  wrex 3073  {crab 3407  wss 3910  c0 4282   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  infcinf 9377  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  cn 12153  2c2 12208  cz 12499  cuz 12763  ...cfz 13424   mod cmo 13774  cexp 13967  abscabs 15119  cprime 16547  ℤ[i]cgz 16801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548  df-gz 16802
This theorem is referenced by:  4sqlem14  16830  4sqlem17  16833  4sqlem18  16834
  Copyright terms: Public domain W3C validator