MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem13 Structured version   Visualization version   GIF version

Theorem 4sqlem13 16586
Description: Lemma for 4sq 16593. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
Assertion
Ref Expression
4sqlem13 (𝜑 → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑖,𝑛,𝑀   𝑛,𝑁   𝑃,𝑖,𝑛   𝜑,𝑛   𝑆,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem13
Dummy variables 𝑘 𝑣 𝑢 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . 3 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
2 4sq.2 . . 3 (𝜑𝑁 ∈ ℕ)
3 4sq.3 . . 3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4 4sq.4 . . 3 (𝜑𝑃 ∈ ℙ)
5 eqid 2738 . . 3 {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
6 eqid 2738 . . 3 (𝑣 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ↦ ((𝑃 − 1) − 𝑣)) = (𝑣 ∈ {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ↦ ((𝑃 − 1) − 𝑣))
71, 2, 3, 4, 5, 64sqlem12 16585 . 2 (𝜑 → ∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))
8 simplrl 773 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 ∈ (1...(𝑃 − 1)))
9 elfznn 13214 . . . . . . . 8 (𝑘 ∈ (1...(𝑃 − 1)) → 𝑘 ∈ ℕ)
108, 9syl 17 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 ∈ ℕ)
11 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃))
12 abs1 14937 . . . . . . . . . . . 12 (abs‘1) = 1
1312oveq1i 7265 . . . . . . . . . . 11 ((abs‘1)↑2) = (1↑2)
14 sq1 13840 . . . . . . . . . . 11 (1↑2) = 1
1513, 14eqtri 2766 . . . . . . . . . 10 ((abs‘1)↑2) = 1
1615oveq2i 7266 . . . . . . . . 9 (((abs‘𝑢)↑2) + ((abs‘1)↑2)) = (((abs‘𝑢)↑2) + 1)
17 simplrr 774 . . . . . . . . . 10 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑢 ∈ ℤ[i])
18 1z 12280 . . . . . . . . . . 11 1 ∈ ℤ
19 zgz 16562 . . . . . . . . . . 11 (1 ∈ ℤ → 1 ∈ ℤ[i])
2018, 19ax-mp 5 . . . . . . . . . 10 1 ∈ ℤ[i]
2114sqlem4a 16580 . . . . . . . . . 10 ((𝑢 ∈ ℤ[i] ∧ 1 ∈ ℤ[i]) → (((abs‘𝑢)↑2) + ((abs‘1)↑2)) ∈ 𝑆)
2217, 20, 21sylancl 585 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (((abs‘𝑢)↑2) + ((abs‘1)↑2)) ∈ 𝑆)
2316, 22eqeltrrid 2844 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (((abs‘𝑢)↑2) + 1) ∈ 𝑆)
2411, 23eqeltrrd 2840 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑘 · 𝑃) ∈ 𝑆)
25 oveq1 7262 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑖 · 𝑃) = (𝑘 · 𝑃))
2625eleq1d 2823 . . . . . . . 8 (𝑖 = 𝑘 → ((𝑖 · 𝑃) ∈ 𝑆 ↔ (𝑘 · 𝑃) ∈ 𝑆))
27 4sq.6 . . . . . . . 8 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
2826, 27elrab2 3620 . . . . . . 7 (𝑘𝑇 ↔ (𝑘 ∈ ℕ ∧ (𝑘 · 𝑃) ∈ 𝑆))
2910, 24, 28sylanbrc 582 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘𝑇)
3029ne0d 4266 . . . . 5 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑇 ≠ ∅)
3127ssrab3 4011 . . . . . . . 8 𝑇 ⊆ ℕ
32 4sq.7 . . . . . . . . 9 𝑀 = inf(𝑇, ℝ, < )
33 nnuz 12550 . . . . . . . . . . 11 ℕ = (ℤ‘1)
3431, 33sseqtri 3953 . . . . . . . . . 10 𝑇 ⊆ (ℤ‘1)
35 infssuzcl 12601 . . . . . . . . . 10 ((𝑇 ⊆ (ℤ‘1) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇)
3634, 30, 35sylancr 586 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → inf(𝑇, ℝ, < ) ∈ 𝑇)
3732, 36eqeltrid 2843 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀𝑇)
3831, 37sselid 3915 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀 ∈ ℕ)
3938nnred 11918 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀 ∈ ℝ)
4010nnred 11918 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 ∈ ℝ)
414ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑃 ∈ ℙ)
42 prmnn 16307 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
4341, 42syl 17 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑃 ∈ ℕ)
4443nnred 11918 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑃 ∈ ℝ)
45 infssuzle 12600 . . . . . . . 8 ((𝑇 ⊆ (ℤ‘1) ∧ 𝑘𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑘)
4634, 29, 45sylancr 586 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → inf(𝑇, ℝ, < ) ≤ 𝑘)
4732, 46eqbrtrid 5105 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀𝑘)
48 prmz 16308 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
4941, 48syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑃 ∈ ℤ)
50 elfzm11 13256 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑘 ∈ (1...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑃)))
5118, 49, 50sylancr 586 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑘 ∈ (1...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑃)))
528, 51mpbid 231 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘𝑘 < 𝑃))
5352simp3d 1142 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑘 < 𝑃)
5439, 40, 44, 47, 53lelttrd 11063 . . . . 5 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → 𝑀 < 𝑃)
5530, 54jca 511 . . . 4 (((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) ∧ (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃)) → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃))
5655ex 412 . . 3 ((𝜑 ∧ (𝑘 ∈ (1...(𝑃 − 1)) ∧ 𝑢 ∈ ℤ[i])) → ((((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃) → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃)))
5756rexlimdvva 3222 . 2 (𝜑 → (∃𝑘 ∈ (1...(𝑃 − 1))∃𝑢 ∈ ℤ[i] (((abs‘𝑢)↑2) + 1) = (𝑘 · 𝑃) → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃)))
587, 57mpd 15 1 (𝜑 → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wrex 3064  {crab 3067  wss 3883  c0 4253   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  infcinf 9130  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  cn 11903  2c2 11958  cz 12249  cuz 12511  ...cfz 13168   mod cmo 13517  cexp 13710  abscabs 14873  cprime 16304  ℤ[i]cgz 16558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305  df-gz 16559
This theorem is referenced by:  4sqlem14  16587  4sqlem17  16590  4sqlem18  16591
  Copyright terms: Public domain W3C validator