Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abscld | Structured version Visualization version GIF version |
Description: Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
abscld | ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | abscl 14999 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |
Copyright terms: Public domain | W3C validator |