Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climserle | Structured version Visualization version GIF version |
Description: The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 9-Feb-2014.) |
Ref | Expression |
---|---|
clim2ser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climserle.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
climserle.3 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) |
climserle.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climserle.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climserle | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim2ser.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climserle.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
3 | climserle.3 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) | |
4 | 2, 1 | eleqtrdi 2849 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | eluzel2 12516 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | climserle.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
8 | 1, 6, 7 | serfre 13680 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
9 | 8 | ffvelrnda 6943 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ) |
10 | 1 | peano2uzs 12571 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → (𝑗 + 1) ∈ 𝑍) |
11 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝑘 = (𝑗 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑗 + 1))) | |
12 | 11 | breq2d 5082 | . . . . . . . 8 ⊢ (𝑘 = (𝑗 + 1) → (0 ≤ (𝐹‘𝑘) ↔ 0 ≤ (𝐹‘(𝑗 + 1)))) |
13 | 12 | imbi2d 340 | . . . . . . 7 ⊢ (𝑘 = (𝑗 + 1) → ((𝜑 → 0 ≤ (𝐹‘𝑘)) ↔ (𝜑 → 0 ≤ (𝐹‘(𝑗 + 1))))) |
14 | climserle.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) | |
15 | 14 | expcom 413 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → (𝜑 → 0 ≤ (𝐹‘𝑘))) |
16 | 13, 15 | vtoclga 3503 | . . . . . 6 ⊢ ((𝑗 + 1) ∈ 𝑍 → (𝜑 → 0 ≤ (𝐹‘(𝑗 + 1)))) |
17 | 16 | impcom 407 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → 0 ≤ (𝐹‘(𝑗 + 1))) |
18 | 10, 17 | sylan2 592 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 0 ≤ (𝐹‘(𝑗 + 1))) |
19 | 11 | eleq1d 2823 | . . . . . . . . 9 ⊢ (𝑘 = (𝑗 + 1) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(𝑗 + 1)) ∈ ℝ)) |
20 | 19 | imbi2d 340 | . . . . . . . 8 ⊢ (𝑘 = (𝑗 + 1) → ((𝜑 → (𝐹‘𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘(𝑗 + 1)) ∈ ℝ))) |
21 | 7 | expcom 413 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 → (𝜑 → (𝐹‘𝑘) ∈ ℝ)) |
22 | 20, 21 | vtoclga 3503 | . . . . . . 7 ⊢ ((𝑗 + 1) ∈ 𝑍 → (𝜑 → (𝐹‘(𝑗 + 1)) ∈ ℝ)) |
23 | 22 | impcom 407 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ∈ ℝ) |
24 | 10, 23 | sylan2 592 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ∈ ℝ) |
25 | 9, 24 | addge01d 11493 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (0 ≤ (𝐹‘(𝑗 + 1)) ↔ (seq𝑀( + , 𝐹)‘𝑗) ≤ ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))) |
26 | 18, 25 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1)))) |
27 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
28 | 27, 1 | eleqtrdi 2849 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
29 | seqp1 13664 | . . . 4 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1)))) | |
30 | 28, 29 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1)))) |
31 | 26, 30 | breqtrrd 5098 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1))) |
32 | 1, 2, 3, 9, 31 | climub 15301 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 ≤ cle 10941 ℤcz 12249 ℤ≥cuz 12511 seqcseq 13649 ⇝ cli 15121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fl 13440 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 |
This theorem is referenced by: isumrpcl 15483 ege2le3 15727 prmreclem6 16550 ioombl1lem4 24630 rge0scvg 31801 |
Copyright terms: Public domain | W3C validator |