| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climserle | Structured version Visualization version GIF version | ||
| Description: The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 9-Feb-2014.) |
| Ref | Expression |
|---|---|
| clim2ser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climserle.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| climserle.3 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) |
| climserle.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
| climserle.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| climserle | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climserle.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
| 3 | climserle.3 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) | |
| 4 | 2, 1 | eleqtrdi 2843 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 5 | eluzel2 12747 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 7 | climserle.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
| 8 | 1, 6, 7 | serfre 13945 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
| 9 | 8 | ffvelcdmda 7026 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ) |
| 10 | 1 | peano2uzs 12806 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → (𝑗 + 1) ∈ 𝑍) |
| 11 | fveq2 6831 | . . . . . . . . 9 ⊢ (𝑘 = (𝑗 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑗 + 1))) | |
| 12 | 11 | breq2d 5107 | . . . . . . . 8 ⊢ (𝑘 = (𝑗 + 1) → (0 ≤ (𝐹‘𝑘) ↔ 0 ≤ (𝐹‘(𝑗 + 1)))) |
| 13 | 12 | imbi2d 340 | . . . . . . 7 ⊢ (𝑘 = (𝑗 + 1) → ((𝜑 → 0 ≤ (𝐹‘𝑘)) ↔ (𝜑 → 0 ≤ (𝐹‘(𝑗 + 1))))) |
| 14 | climserle.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) | |
| 15 | 14 | expcom 413 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → (𝜑 → 0 ≤ (𝐹‘𝑘))) |
| 16 | 13, 15 | vtoclga 3529 | . . . . . 6 ⊢ ((𝑗 + 1) ∈ 𝑍 → (𝜑 → 0 ≤ (𝐹‘(𝑗 + 1)))) |
| 17 | 16 | impcom 407 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → 0 ≤ (𝐹‘(𝑗 + 1))) |
| 18 | 10, 17 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 0 ≤ (𝐹‘(𝑗 + 1))) |
| 19 | 11 | eleq1d 2818 | . . . . . . . . 9 ⊢ (𝑘 = (𝑗 + 1) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(𝑗 + 1)) ∈ ℝ)) |
| 20 | 19 | imbi2d 340 | . . . . . . . 8 ⊢ (𝑘 = (𝑗 + 1) → ((𝜑 → (𝐹‘𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘(𝑗 + 1)) ∈ ℝ))) |
| 21 | 7 | expcom 413 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 → (𝜑 → (𝐹‘𝑘) ∈ ℝ)) |
| 22 | 20, 21 | vtoclga 3529 | . . . . . . 7 ⊢ ((𝑗 + 1) ∈ 𝑍 → (𝜑 → (𝐹‘(𝑗 + 1)) ∈ ℝ)) |
| 23 | 22 | impcom 407 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ∈ ℝ) |
| 24 | 10, 23 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ∈ ℝ) |
| 25 | 9, 24 | addge01d 11716 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (0 ≤ (𝐹‘(𝑗 + 1)) ↔ (seq𝑀( + , 𝐹)‘𝑗) ≤ ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))) |
| 26 | 18, 25 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1)))) |
| 27 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
| 28 | 27, 1 | eleqtrdi 2843 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
| 29 | seqp1 13930 | . . . 4 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1)))) | |
| 30 | 28, 29 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1)))) |
| 31 | 26, 30 | breqtrrd 5123 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1))) |
| 32 | 1, 2, 3, 9, 31 | climub 15576 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ℝcr 11016 0cc0 11017 1c1 11018 + caddc 11020 ≤ cle 11158 ℤcz 12479 ℤ≥cuz 12742 seqcseq 13915 ⇝ cli 15398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-fz 13415 df-fl 13703 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 df-rlim 15403 |
| This theorem is referenced by: isumrpcl 15757 ege2le3 16004 prmreclem6 16840 ioombl1lem4 25509 rge0scvg 34034 |
| Copyright terms: Public domain | W3C validator |