Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climserle | Structured version Visualization version GIF version |
Description: The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 9-Feb-2014.) |
Ref | Expression |
---|---|
clim2ser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climserle.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
climserle.3 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) |
climserle.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climserle.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climserle | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim2ser.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climserle.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
3 | climserle.3 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) | |
4 | 2, 1 | eleqtrdi 2848 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | eluzel2 12667 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | climserle.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
8 | 1, 6, 7 | serfre 13832 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
9 | 8 | ffvelcdmda 7001 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ) |
10 | 1 | peano2uzs 12722 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → (𝑗 + 1) ∈ 𝑍) |
11 | fveq2 6812 | . . . . . . . . 9 ⊢ (𝑘 = (𝑗 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑗 + 1))) | |
12 | 11 | breq2d 5099 | . . . . . . . 8 ⊢ (𝑘 = (𝑗 + 1) → (0 ≤ (𝐹‘𝑘) ↔ 0 ≤ (𝐹‘(𝑗 + 1)))) |
13 | 12 | imbi2d 340 | . . . . . . 7 ⊢ (𝑘 = (𝑗 + 1) → ((𝜑 → 0 ≤ (𝐹‘𝑘)) ↔ (𝜑 → 0 ≤ (𝐹‘(𝑗 + 1))))) |
14 | climserle.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) | |
15 | 14 | expcom 414 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → (𝜑 → 0 ≤ (𝐹‘𝑘))) |
16 | 13, 15 | vtoclga 3522 | . . . . . 6 ⊢ ((𝑗 + 1) ∈ 𝑍 → (𝜑 → 0 ≤ (𝐹‘(𝑗 + 1)))) |
17 | 16 | impcom 408 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → 0 ≤ (𝐹‘(𝑗 + 1))) |
18 | 10, 17 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 0 ≤ (𝐹‘(𝑗 + 1))) |
19 | 11 | eleq1d 2822 | . . . . . . . . 9 ⊢ (𝑘 = (𝑗 + 1) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(𝑗 + 1)) ∈ ℝ)) |
20 | 19 | imbi2d 340 | . . . . . . . 8 ⊢ (𝑘 = (𝑗 + 1) → ((𝜑 → (𝐹‘𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘(𝑗 + 1)) ∈ ℝ))) |
21 | 7 | expcom 414 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝑍 → (𝜑 → (𝐹‘𝑘) ∈ ℝ)) |
22 | 20, 21 | vtoclga 3522 | . . . . . . 7 ⊢ ((𝑗 + 1) ∈ 𝑍 → (𝜑 → (𝐹‘(𝑗 + 1)) ∈ ℝ)) |
23 | 22 | impcom 408 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ∈ ℝ) |
24 | 10, 23 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ∈ ℝ) |
25 | 9, 24 | addge01d 11643 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (0 ≤ (𝐹‘(𝑗 + 1)) ↔ (seq𝑀( + , 𝐹)‘𝑗) ≤ ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))) |
26 | 18, 25 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1)))) |
27 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
28 | 27, 1 | eleqtrdi 2848 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
29 | seqp1 13816 | . . . 4 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1)))) | |
30 | 28, 29 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1)))) |
31 | 26, 30 | breqtrrd 5115 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1))) |
32 | 1, 2, 3, 9, 31 | climub 15452 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5087 ‘cfv 6466 (class class class)co 7317 ℝcr 10950 0cc0 10951 1c1 10952 + caddc 10954 ≤ cle 11090 ℤcz 12399 ℤ≥cuz 12662 seqcseq 13801 ⇝ cli 15272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-pre-sup 11029 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-pm 8668 df-en 8784 df-dom 8785 df-sdom 8786 df-sup 9278 df-inf 9279 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-div 11713 df-nn 12054 df-2 12116 df-3 12117 df-n0 12314 df-z 12400 df-uz 12663 df-rp 12811 df-fz 13320 df-fl 13592 df-seq 13802 df-exp 13863 df-cj 14889 df-re 14890 df-im 14891 df-sqrt 15025 df-abs 15026 df-clim 15276 df-rlim 15277 |
This theorem is referenced by: isumrpcl 15634 ege2le3 15878 prmreclem6 16699 ioombl1lem4 24808 rge0scvg 32039 |
Copyright terms: Public domain | W3C validator |