MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climserle Structured version   Visualization version   GIF version

Theorem climserle 15577
Description: The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
climserle.2 (𝜑𝑁𝑍)
climserle.3 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
climserle.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climserle.5 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
climserle (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ 𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem climserle
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 clim2ser.1 . 2 𝑍 = (ℤ𝑀)
2 climserle.2 . 2 (𝜑𝑁𝑍)
3 climserle.3 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
42, 1eleqtrdi 2843 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzel2 12747 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
64, 5syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
7 climserle.4 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
81, 6, 7serfre 13945 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
98ffvelcdmda 7026 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
101peano2uzs 12806 . . . . 5 (𝑗𝑍 → (𝑗 + 1) ∈ 𝑍)
11 fveq2 6831 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (𝐹𝑘) = (𝐹‘(𝑗 + 1)))
1211breq2d 5107 . . . . . . . 8 (𝑘 = (𝑗 + 1) → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹‘(𝑗 + 1))))
1312imbi2d 340 . . . . . . 7 (𝑘 = (𝑗 + 1) → ((𝜑 → 0 ≤ (𝐹𝑘)) ↔ (𝜑 → 0 ≤ (𝐹‘(𝑗 + 1)))))
14 climserle.5 . . . . . . . 8 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
1514expcom 413 . . . . . . 7 (𝑘𝑍 → (𝜑 → 0 ≤ (𝐹𝑘)))
1613, 15vtoclga 3529 . . . . . 6 ((𝑗 + 1) ∈ 𝑍 → (𝜑 → 0 ≤ (𝐹‘(𝑗 + 1))))
1716impcom 407 . . . . 5 ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → 0 ≤ (𝐹‘(𝑗 + 1)))
1810, 17sylan2 593 . . . 4 ((𝜑𝑗𝑍) → 0 ≤ (𝐹‘(𝑗 + 1)))
1911eleq1d 2818 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑗 + 1)) ∈ ℝ))
2019imbi2d 340 . . . . . . . 8 (𝑘 = (𝑗 + 1) → ((𝜑 → (𝐹𝑘) ∈ ℝ) ↔ (𝜑 → (𝐹‘(𝑗 + 1)) ∈ ℝ)))
217expcom 413 . . . . . . . 8 (𝑘𝑍 → (𝜑 → (𝐹𝑘) ∈ ℝ))
2220, 21vtoclga 3529 . . . . . . 7 ((𝑗 + 1) ∈ 𝑍 → (𝜑 → (𝐹‘(𝑗 + 1)) ∈ ℝ))
2322impcom 407 . . . . . 6 ((𝜑 ∧ (𝑗 + 1) ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ∈ ℝ)
2410, 23sylan2 593 . . . . 5 ((𝜑𝑗𝑍) → (𝐹‘(𝑗 + 1)) ∈ ℝ)
259, 24addge01d 11716 . . . 4 ((𝜑𝑗𝑍) → (0 ≤ (𝐹‘(𝑗 + 1)) ↔ (seq𝑀( + , 𝐹)‘𝑗) ≤ ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1)))))
2618, 25mpbid 232 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))
27 simpr 484 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
2827, 1eleqtrdi 2843 . . . 4 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
29 seqp1 13930 . . . 4 (𝑗 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))
3028, 29syl 17 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘(𝑗 + 1)) = ((seq𝑀( + , 𝐹)‘𝑗) + (𝐹‘(𝑗 + 1))))
3126, 30breqtrrd 5123 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1)))
321, 2, 3, 9, 31climub 15576 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6489  (class class class)co 7355  cr 11016  0cc0 11017  1c1 11018   + caddc 11020  cle 11158  cz 12479  cuz 12742  seqcseq 13915  cli 15398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-fz 13415  df-fl 13703  df-seq 13916  df-exp 13976  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-rlim 15403
This theorem is referenced by:  isumrpcl  15757  ege2le3  16004  prmreclem6  16840  ioombl1lem4  25509  rge0scvg  34034
  Copyright terms: Public domain W3C validator