Proof of Theorem sticksstones6
| Step | Hyp | Ref
| Expression |
| 1 | | sticksstones6.4 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (1...𝐾)) |
| 2 | | elfznn 13594 |
. . . . 5
⊢ (𝑋 ∈ (1...𝐾) → 𝑋 ∈ ℕ) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ ℕ) |
| 4 | 3 | nnred 12282 |
. . 3
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 5 | | fzfid 14015 |
. . . . 5
⊢ (𝜑 → (1...𝑋) ∈ Fin) |
| 6 | | 1zzd 12650 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 1 ∈ ℤ) |
| 7 | | sticksstones6.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 8 | 7 | nn0zd 12641 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 9 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝐾 ∈ ℤ) |
| 10 | 9 | peano2zd 12727 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℤ) |
| 11 | | elfznn 13594 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...𝑋) → 𝑖 ∈ ℕ) |
| 12 | 11 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℕ) |
| 13 | 12 | nnzd 12642 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℤ) |
| 14 | 12 | nnge1d 12315 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 1 ≤ 𝑖) |
| 15 | 12 | nnred 12282 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℝ) |
| 16 | 9 | zred 12724 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝐾 ∈ ℝ) |
| 17 | 10 | zred 12724 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℝ) |
| 18 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑋 ∈ ℕ) |
| 19 | 18 | nnred 12282 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑋 ∈ ℝ) |
| 20 | | elfzle2 13569 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑋) → 𝑖 ≤ 𝑋) |
| 21 | 20 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑖 ≤ 𝑋) |
| 22 | | elfzle2 13569 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ (1...𝐾) → 𝑋 ≤ 𝐾) |
| 23 | 1, 22 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ≤ 𝐾) |
| 24 | 23 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑋 ≤ 𝐾) |
| 25 | 15, 19, 16, 21, 24 | letrd 11419 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑖 ≤ 𝐾) |
| 26 | 16 | lep1d 12200 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝐾 ≤ (𝐾 + 1)) |
| 27 | 15, 16, 17, 25, 26 | letrd 11419 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑖 ≤ (𝐾 + 1)) |
| 28 | 6, 10, 13, 14, 27 | elfzd 13556 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑖 ∈ (1...(𝐾 + 1))) |
| 29 | | sticksstones6.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:(1...(𝐾 +
1))⟶ℕ0) |
| 30 | 29 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝐺:(1...(𝐾 +
1))⟶ℕ0) |
| 31 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝑖 ∈ (1...(𝐾 + 1))) |
| 32 | 30, 31 | ffvelcdmd 7104 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺‘𝑖) ∈
ℕ0) |
| 33 | 32 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑋)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺‘𝑖) ∈
ℕ0) |
| 34 | 28, 33 | mpdan 687 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → (𝐺‘𝑖) ∈
ℕ0) |
| 35 | 5, 34 | fsumnn0cl 15773 |
. . . 4
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) ∈
ℕ0) |
| 36 | 35 | nn0red 12590 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) ∈ ℝ) |
| 37 | | sticksstones6.5 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ (1...𝐾)) |
| 38 | | elfznn 13594 |
. . . . 5
⊢ (𝑌 ∈ (1...𝐾) → 𝑌 ∈ ℕ) |
| 39 | 37, 38 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ ℕ) |
| 40 | 39 | nnred 12282 |
. . 3
⊢ (𝜑 → 𝑌 ∈ ℝ) |
| 41 | | fzfid 14015 |
. . . . 5
⊢ (𝜑 → ((𝑋 + 1)...𝑌) ∈ Fin) |
| 42 | | 1zzd 12650 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ∈ ℤ) |
| 43 | 8 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝐾 ∈ ℤ) |
| 44 | 43 | peano2zd 12727 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐾 + 1) ∈ ℤ) |
| 45 | | elfzelz 13565 |
. . . . . . . . 9
⊢ (𝑖 ∈ ((𝑋 + 1)...𝑌) → 𝑖 ∈ ℤ) |
| 46 | 45 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ∈ ℤ) |
| 47 | | 1red 11263 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ∈ ℝ) |
| 48 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑋 ∈ ℝ) |
| 49 | 48, 47 | readdcld 11291 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝑋 + 1) ∈ ℝ) |
| 50 | 46 | zred 12724 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ∈ ℝ) |
| 51 | | 1red 11263 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℝ) |
| 52 | 4, 51 | readdcld 11291 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋 + 1) ∈ ℝ) |
| 53 | 3 | nnge1d 12315 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ≤ 𝑋) |
| 54 | 4 | ltp1d 12199 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 < (𝑋 + 1)) |
| 55 | 4, 52, 54 | ltled 11410 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ≤ (𝑋 + 1)) |
| 56 | 51, 4, 52, 53, 55 | letrd 11419 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ≤ (𝑋 + 1)) |
| 57 | 56 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ≤ (𝑋 + 1)) |
| 58 | | elfzle1 13568 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ((𝑋 + 1)...𝑌) → (𝑋 + 1) ≤ 𝑖) |
| 59 | 58 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝑋 + 1) ≤ 𝑖) |
| 60 | 47, 49, 50, 57, 59 | letrd 11419 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ≤ 𝑖) |
| 61 | 40 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑌 ∈ ℝ) |
| 62 | 44 | zred 12724 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐾 + 1) ∈ ℝ) |
| 63 | | elfzle2 13569 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ((𝑋 + 1)...𝑌) → 𝑖 ≤ 𝑌) |
| 64 | 63 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ≤ 𝑌) |
| 65 | 43 | zred 12724 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝐾 ∈ ℝ) |
| 66 | | elfzle2 13569 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ (1...𝐾) → 𝑌 ≤ 𝐾) |
| 67 | 37, 66 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ≤ 𝐾) |
| 68 | 67 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑌 ≤ 𝐾) |
| 69 | 65 | lep1d 12200 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝐾 ≤ (𝐾 + 1)) |
| 70 | 61, 65, 62, 68, 69 | letrd 11419 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑌 ≤ (𝐾 + 1)) |
| 71 | 50, 61, 62, 64, 70 | letrd 11419 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ≤ (𝐾 + 1)) |
| 72 | 42, 44, 46, 60, 71 | elfzd 13556 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ∈ (1...(𝐾 + 1))) |
| 73 | 32 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺‘𝑖) ∈
ℕ0) |
| 74 | 72, 73 | mpdan 687 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐺‘𝑖) ∈
ℕ0) |
| 75 | 74 | nn0red 12590 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐺‘𝑖) ∈ ℝ) |
| 76 | 41, 75 | fsumrecl 15771 |
. . . 4
⊢ (𝜑 → Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖) ∈ ℝ) |
| 77 | 36, 76 | readdcld 11291 |
. . 3
⊢ (𝜑 → (Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖)) ∈ ℝ) |
| 78 | | sticksstones6.6 |
. . 3
⊢ (𝜑 → 𝑋 < 𝑌) |
| 79 | 74 | nn0ge0d 12592 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 0 ≤ (𝐺‘𝑖)) |
| 80 | 41, 75, 79 | fsumge0 15832 |
. . . 4
⊢ (𝜑 → 0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖)) |
| 81 | 36, 76 | addge01d 11852 |
. . . 4
⊢ (𝜑 → (0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖) ↔ Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖)))) |
| 82 | 80, 81 | mpbid 232 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖))) |
| 83 | 4, 36, 40, 77, 78, 82 | ltleaddd 11885 |
. 2
⊢ (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖)) < (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖)))) |
| 84 | | sticksstones6.7 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺‘𝑖))) |
| 85 | 84 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺‘𝑖)))) |
| 86 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) |
| 87 | 86 | oveq2d 7448 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (1...𝑥) = (1...𝑋)) |
| 88 | 87 | sumeq1d 15737 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → Σ𝑖 ∈ (1...𝑥)(𝐺‘𝑖) = Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖)) |
| 89 | 86, 88 | oveq12d 7450 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺‘𝑖)) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖))) |
| 90 | 3 | nnnn0d 12589 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈
ℕ0) |
| 91 | 90, 35 | nn0addcld 12593 |
. . . 4
⊢ (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖)) ∈
ℕ0) |
| 92 | 85, 89, 1, 91 | fvmptd 7022 |
. . 3
⊢ (𝜑 → (𝐹‘𝑋) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖))) |
| 93 | 92 | eqcomd 2742 |
. 2
⊢ (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖)) = (𝐹‘𝑋)) |
| 94 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝑌) → 𝑥 = 𝑌) |
| 95 | 94 | oveq2d 7448 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (1...𝑥) = (1...𝑌)) |
| 96 | 95 | sumeq1d 15737 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝑌) → Σ𝑖 ∈ (1...𝑥)(𝐺‘𝑖) = Σ𝑖 ∈ (1...𝑌)(𝐺‘𝑖)) |
| 97 | 94, 96 | oveq12d 7450 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺‘𝑖)) = (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺‘𝑖))) |
| 98 | 39 | nnnn0d 12589 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈
ℕ0) |
| 99 | | fzfid 14015 |
. . . . . . 7
⊢ (𝜑 → (1...𝑌) ∈ Fin) |
| 100 | | 1zzd 12650 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 1 ∈ ℤ) |
| 101 | 8 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝐾 ∈ ℤ) |
| 102 | 101 | peano2zd 12727 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → (𝐾 + 1) ∈ ℤ) |
| 103 | | elfzelz 13565 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑌) → 𝑖 ∈ ℤ) |
| 104 | 103 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝑖 ∈ ℤ) |
| 105 | | elfzle1 13568 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑌) → 1 ≤ 𝑖) |
| 106 | 105 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 1 ≤ 𝑖) |
| 107 | 104 | zred 12724 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝑖 ∈ ℝ) |
| 108 | 40 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝑌 ∈ ℝ) |
| 109 | 102 | zred 12724 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → (𝐾 + 1) ∈ ℝ) |
| 110 | | elfzle2 13569 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1...𝑌) → 𝑖 ≤ 𝑌) |
| 111 | 110 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝑖 ≤ 𝑌) |
| 112 | 101 | zred 12724 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝐾 ∈ ℝ) |
| 113 | 67 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝑌 ≤ 𝐾) |
| 114 | 112 | lep1d 12200 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝐾 ≤ (𝐾 + 1)) |
| 115 | 108, 112,
109, 113, 114 | letrd 11419 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝑌 ≤ (𝐾 + 1)) |
| 116 | 107, 108,
109, 111, 115 | letrd 11419 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝑖 ≤ (𝐾 + 1)) |
| 117 | 100, 102,
104, 106, 116 | elfzd 13556 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝑖 ∈ (1...(𝐾 + 1))) |
| 118 | 32 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑌)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺‘𝑖) ∈
ℕ0) |
| 119 | 117, 118 | mpdan 687 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → (𝐺‘𝑖) ∈
ℕ0) |
| 120 | 99, 119 | fsumnn0cl 15773 |
. . . . . 6
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑌)(𝐺‘𝑖) ∈
ℕ0) |
| 121 | 98, 120 | nn0addcld 12593 |
. . . . 5
⊢ (𝜑 → (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺‘𝑖)) ∈
ℕ0) |
| 122 | 85, 97, 37, 121 | fvmptd 7022 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑌) = (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺‘𝑖))) |
| 123 | | fzdisj 13592 |
. . . . . . 7
⊢ (𝑋 < (𝑋 + 1) → ((1...𝑋) ∩ ((𝑋 + 1)...𝑌)) = ∅) |
| 124 | 54, 123 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((1...𝑋) ∩ ((𝑋 + 1)...𝑌)) = ∅) |
| 125 | | 1zzd 12650 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℤ) |
| 126 | 98 | nn0zd 12641 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ ℤ) |
| 127 | 90 | nn0zd 12641 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ ℤ) |
| 128 | 4, 40, 78 | ltled 11410 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| 129 | 125, 126,
127, 53, 128 | elfzd 13556 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (1...𝑌)) |
| 130 | | fzsplit 13591 |
. . . . . . 7
⊢ (𝑋 ∈ (1...𝑌) → (1...𝑌) = ((1...𝑋) ∪ ((𝑋 + 1)...𝑌))) |
| 131 | 129, 130 | syl 17 |
. . . . . 6
⊢ (𝜑 → (1...𝑌) = ((1...𝑋) ∪ ((𝑋 + 1)...𝑌))) |
| 132 | 119 | nn0red 12590 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → (𝐺‘𝑖) ∈ ℝ) |
| 133 | 132 | recnd 11290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → (𝐺‘𝑖) ∈ ℂ) |
| 134 | 124, 131,
99, 133 | fsumsplit 15778 |
. . . . 5
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑌)(𝐺‘𝑖) = (Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖))) |
| 135 | 134 | oveq2d 7448 |
. . . 4
⊢ (𝜑 → (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺‘𝑖)) = (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖)))) |
| 136 | 122, 135 | eqtrd 2776 |
. . 3
⊢ (𝜑 → (𝐹‘𝑌) = (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖)))) |
| 137 | 136 | eqcomd 2742 |
. 2
⊢ (𝜑 → (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖))) = (𝐹‘𝑌)) |
| 138 | 83, 93, 137 | 3brtr3d 5173 |
1
⊢ (𝜑 → (𝐹‘𝑋) < (𝐹‘𝑌)) |