Proof of Theorem sticksstones6
Step | Hyp | Ref
| Expression |
1 | | sticksstones6.4 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (1...𝐾)) |
2 | | elfznn 13285 |
. . . . 5
⊢ (𝑋 ∈ (1...𝐾) → 𝑋 ∈ ℕ) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ ℕ) |
4 | 3 | nnred 11988 |
. . 3
⊢ (𝜑 → 𝑋 ∈ ℝ) |
5 | | fzfid 13693 |
. . . . 5
⊢ (𝜑 → (1...𝑋) ∈ Fin) |
6 | | 1zzd 12351 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 1 ∈ ℤ) |
7 | | sticksstones6.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
8 | 7 | nn0zd 12424 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ ℤ) |
9 | 8 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝐾 ∈ ℤ) |
10 | 9 | peano2zd 12429 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℤ) |
11 | | elfznn 13285 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1...𝑋) → 𝑖 ∈ ℕ) |
12 | 11 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℕ) |
13 | 12 | nnzd 12425 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℤ) |
14 | 12 | nnge1d 12021 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 1 ≤ 𝑖) |
15 | 12 | nnred 11988 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℝ) |
16 | 9 | zred 12426 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝐾 ∈ ℝ) |
17 | 10 | zred 12426 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℝ) |
18 | 3 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑋 ∈ ℕ) |
19 | 18 | nnred 11988 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑋 ∈ ℝ) |
20 | | elfzle2 13260 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑋) → 𝑖 ≤ 𝑋) |
21 | 20 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑖 ≤ 𝑋) |
22 | | elfzle2 13260 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ (1...𝐾) → 𝑋 ≤ 𝐾) |
23 | 1, 22 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ≤ 𝐾) |
24 | 23 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑋 ≤ 𝐾) |
25 | 15, 19, 16, 21, 24 | letrd 11132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑖 ≤ 𝐾) |
26 | 16 | lep1d 11906 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝐾 ≤ (𝐾 + 1)) |
27 | 15, 16, 17, 25, 26 | letrd 11132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑖 ≤ (𝐾 + 1)) |
28 | 6, 10, 13, 14, 27 | elfzd 13247 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → 𝑖 ∈ (1...(𝐾 + 1))) |
29 | | sticksstones6.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:(1...(𝐾 +
1))⟶ℕ0) |
30 | 29 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝐺:(1...(𝐾 +
1))⟶ℕ0) |
31 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝑖 ∈ (1...(𝐾 + 1))) |
32 | 30, 31 | ffvelrnd 6962 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺‘𝑖) ∈
ℕ0) |
33 | 32 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑋)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺‘𝑖) ∈
ℕ0) |
34 | 28, 33 | mpdan 684 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑋)) → (𝐺‘𝑖) ∈
ℕ0) |
35 | 5, 34 | fsumnn0cl 15448 |
. . . 4
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) ∈
ℕ0) |
36 | 35 | nn0red 12294 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) ∈ ℝ) |
37 | | sticksstones6.5 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ (1...𝐾)) |
38 | | elfznn 13285 |
. . . . 5
⊢ (𝑌 ∈ (1...𝐾) → 𝑌 ∈ ℕ) |
39 | 37, 38 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ ℕ) |
40 | 39 | nnred 11988 |
. . 3
⊢ (𝜑 → 𝑌 ∈ ℝ) |
41 | | fzfid 13693 |
. . . . 5
⊢ (𝜑 → ((𝑋 + 1)...𝑌) ∈ Fin) |
42 | | 1zzd 12351 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ∈ ℤ) |
43 | 8 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝐾 ∈ ℤ) |
44 | 43 | peano2zd 12429 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐾 + 1) ∈ ℤ) |
45 | | elfzelz 13256 |
. . . . . . . . 9
⊢ (𝑖 ∈ ((𝑋 + 1)...𝑌) → 𝑖 ∈ ℤ) |
46 | 45 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ∈ ℤ) |
47 | | 1red 10976 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ∈ ℝ) |
48 | 4 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑋 ∈ ℝ) |
49 | 48, 47 | readdcld 11004 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝑋 + 1) ∈ ℝ) |
50 | 46 | zred 12426 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ∈ ℝ) |
51 | | 1red 10976 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℝ) |
52 | 4, 51 | readdcld 11004 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋 + 1) ∈ ℝ) |
53 | 3 | nnge1d 12021 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ≤ 𝑋) |
54 | 4 | ltp1d 11905 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 < (𝑋 + 1)) |
55 | 4, 52, 54 | ltled 11123 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ≤ (𝑋 + 1)) |
56 | 51, 4, 52, 53, 55 | letrd 11132 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ≤ (𝑋 + 1)) |
57 | 56 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ≤ (𝑋 + 1)) |
58 | | elfzle1 13259 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ((𝑋 + 1)...𝑌) → (𝑋 + 1) ≤ 𝑖) |
59 | 58 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝑋 + 1) ≤ 𝑖) |
60 | 47, 49, 50, 57, 59 | letrd 11132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ≤ 𝑖) |
61 | 40 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑌 ∈ ℝ) |
62 | 44 | zred 12426 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐾 + 1) ∈ ℝ) |
63 | | elfzle2 13260 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ((𝑋 + 1)...𝑌) → 𝑖 ≤ 𝑌) |
64 | 63 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ≤ 𝑌) |
65 | 43 | zred 12426 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝐾 ∈ ℝ) |
66 | | elfzle2 13260 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ (1...𝐾) → 𝑌 ≤ 𝐾) |
67 | 37, 66 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ≤ 𝐾) |
68 | 67 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑌 ≤ 𝐾) |
69 | 65 | lep1d 11906 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝐾 ≤ (𝐾 + 1)) |
70 | 61, 65, 62, 68, 69 | letrd 11132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑌 ≤ (𝐾 + 1)) |
71 | 50, 61, 62, 64, 70 | letrd 11132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ≤ (𝐾 + 1)) |
72 | 42, 44, 46, 60, 71 | elfzd 13247 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ∈ (1...(𝐾 + 1))) |
73 | 32 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺‘𝑖) ∈
ℕ0) |
74 | 72, 73 | mpdan 684 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐺‘𝑖) ∈
ℕ0) |
75 | 74 | nn0red 12294 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐺‘𝑖) ∈ ℝ) |
76 | 41, 75 | fsumrecl 15446 |
. . . 4
⊢ (𝜑 → Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖) ∈ ℝ) |
77 | 36, 76 | readdcld 11004 |
. . 3
⊢ (𝜑 → (Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖)) ∈ ℝ) |
78 | | sticksstones6.6 |
. . 3
⊢ (𝜑 → 𝑋 < 𝑌) |
79 | 74 | nn0ge0d 12296 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑋 + 1)...𝑌)) → 0 ≤ (𝐺‘𝑖)) |
80 | 41, 75, 79 | fsumge0 15507 |
. . . 4
⊢ (𝜑 → 0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖)) |
81 | 36, 76 | addge01d 11563 |
. . . 4
⊢ (𝜑 → (0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖) ↔ Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖)))) |
82 | 80, 81 | mpbid 231 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖))) |
83 | 4, 36, 40, 77, 78, 82 | ltleaddd 11596 |
. 2
⊢ (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖)) < (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖)))) |
84 | | sticksstones6.7 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺‘𝑖))) |
85 | 84 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺‘𝑖)))) |
86 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) |
87 | 86 | oveq2d 7291 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (1...𝑥) = (1...𝑋)) |
88 | 87 | sumeq1d 15413 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → Σ𝑖 ∈ (1...𝑥)(𝐺‘𝑖) = Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖)) |
89 | 86, 88 | oveq12d 7293 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺‘𝑖)) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖))) |
90 | 3 | nnnn0d 12293 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈
ℕ0) |
91 | 90, 35 | nn0addcld 12297 |
. . . 4
⊢ (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖)) ∈
ℕ0) |
92 | 85, 89, 1, 91 | fvmptd 6882 |
. . 3
⊢ (𝜑 → (𝐹‘𝑋) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖))) |
93 | 92 | eqcomd 2744 |
. 2
⊢ (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖)) = (𝐹‘𝑋)) |
94 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝑌) → 𝑥 = 𝑌) |
95 | 94 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (1...𝑥) = (1...𝑌)) |
96 | 95 | sumeq1d 15413 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝑌) → Σ𝑖 ∈ (1...𝑥)(𝐺‘𝑖) = Σ𝑖 ∈ (1...𝑌)(𝐺‘𝑖)) |
97 | 94, 96 | oveq12d 7293 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝑌) → (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺‘𝑖)) = (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺‘𝑖))) |
98 | 39 | nnnn0d 12293 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈
ℕ0) |
99 | | fzfid 13693 |
. . . . . . 7
⊢ (𝜑 → (1...𝑌) ∈ Fin) |
100 | | 1zzd 12351 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 1 ∈ ℤ) |
101 | 8 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝐾 ∈ ℤ) |
102 | 101 | peano2zd 12429 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → (𝐾 + 1) ∈ ℤ) |
103 | | elfzelz 13256 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑌) → 𝑖 ∈ ℤ) |
104 | 103 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝑖 ∈ ℤ) |
105 | | elfzle1 13259 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑌) → 1 ≤ 𝑖) |
106 | 105 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 1 ≤ 𝑖) |
107 | 104 | zred 12426 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝑖 ∈ ℝ) |
108 | 40 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝑌 ∈ ℝ) |
109 | 102 | zred 12426 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → (𝐾 + 1) ∈ ℝ) |
110 | | elfzle2 13260 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1...𝑌) → 𝑖 ≤ 𝑌) |
111 | 110 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝑖 ≤ 𝑌) |
112 | 101 | zred 12426 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝐾 ∈ ℝ) |
113 | 67 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝑌 ≤ 𝐾) |
114 | 112 | lep1d 11906 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝐾 ≤ (𝐾 + 1)) |
115 | 108, 112,
109, 113, 114 | letrd 11132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝑌 ≤ (𝐾 + 1)) |
116 | 107, 108,
109, 111, 115 | letrd 11132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝑖 ≤ (𝐾 + 1)) |
117 | 100, 102,
104, 106, 116 | elfzd 13247 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → 𝑖 ∈ (1...(𝐾 + 1))) |
118 | 32 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (1...𝑌)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺‘𝑖) ∈
ℕ0) |
119 | 117, 118 | mpdan 684 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → (𝐺‘𝑖) ∈
ℕ0) |
120 | 99, 119 | fsumnn0cl 15448 |
. . . . . 6
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑌)(𝐺‘𝑖) ∈
ℕ0) |
121 | 98, 120 | nn0addcld 12297 |
. . . . 5
⊢ (𝜑 → (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺‘𝑖)) ∈
ℕ0) |
122 | 85, 97, 37, 121 | fvmptd 6882 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑌) = (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺‘𝑖))) |
123 | | fzdisj 13283 |
. . . . . . 7
⊢ (𝑋 < (𝑋 + 1) → ((1...𝑋) ∩ ((𝑋 + 1)...𝑌)) = ∅) |
124 | 54, 123 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((1...𝑋) ∩ ((𝑋 + 1)...𝑌)) = ∅) |
125 | | 1zzd 12351 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℤ) |
126 | 98 | nn0zd 12424 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ ℤ) |
127 | 90 | nn0zd 12424 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ ℤ) |
128 | 4, 40, 78 | ltled 11123 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ≤ 𝑌) |
129 | 125, 126,
127, 53, 128 | elfzd 13247 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (1...𝑌)) |
130 | | fzsplit 13282 |
. . . . . . 7
⊢ (𝑋 ∈ (1...𝑌) → (1...𝑌) = ((1...𝑋) ∪ ((𝑋 + 1)...𝑌))) |
131 | 129, 130 | syl 17 |
. . . . . 6
⊢ (𝜑 → (1...𝑌) = ((1...𝑋) ∪ ((𝑋 + 1)...𝑌))) |
132 | 119 | nn0red 12294 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → (𝐺‘𝑖) ∈ ℝ) |
133 | 132 | recnd 11003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑌)) → (𝐺‘𝑖) ∈ ℂ) |
134 | 124, 131,
99, 133 | fsumsplit 15453 |
. . . . 5
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑌)(𝐺‘𝑖) = (Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖))) |
135 | 134 | oveq2d 7291 |
. . . 4
⊢ (𝜑 → (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺‘𝑖)) = (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖)))) |
136 | 122, 135 | eqtrd 2778 |
. . 3
⊢ (𝜑 → (𝐹‘𝑌) = (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖)))) |
137 | 136 | eqcomd 2744 |
. 2
⊢ (𝜑 → (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺‘𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺‘𝑖))) = (𝐹‘𝑌)) |
138 | 83, 93, 137 | 3brtr3d 5105 |
1
⊢ (𝜑 → (𝐹‘𝑋) < (𝐹‘𝑌)) |