Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones6 Structured version   Visualization version   GIF version

Theorem sticksstones6 40107
Description: Function induces an order isomorphism for sticks and stones theorem. (Contributed by metakunt, 1-Oct-2024.)
Hypotheses
Ref Expression
sticksstones6.1 (𝜑𝑁 ∈ ℕ0)
sticksstones6.2 (𝜑𝐾 ∈ ℕ0)
sticksstones6.3 (𝜑𝐺:(1...(𝐾 + 1))⟶ℕ0)
sticksstones6.4 (𝜑𝑋 ∈ (1...𝐾))
sticksstones6.5 (𝜑𝑌 ∈ (1...𝐾))
sticksstones6.6 (𝜑𝑋 < 𝑌)
sticksstones6.7 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)))
Assertion
Ref Expression
sticksstones6 (𝜑 → (𝐹𝑋) < (𝐹𝑌))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐾   𝑖,𝑋,𝑥   𝑖,𝑌,𝑥   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑖)   𝐺(𝑖)   𝐾(𝑖)   𝑁(𝑥,𝑖)

Proof of Theorem sticksstones6
StepHypRef Expression
1 sticksstones6.4 . . . . 5 (𝜑𝑋 ∈ (1...𝐾))
2 elfznn 13285 . . . . 5 (𝑋 ∈ (1...𝐾) → 𝑋 ∈ ℕ)
31, 2syl 17 . . . 4 (𝜑𝑋 ∈ ℕ)
43nnred 11988 . . 3 (𝜑𝑋 ∈ ℝ)
5 fzfid 13693 . . . . 5 (𝜑 → (1...𝑋) ∈ Fin)
6 1zzd 12351 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 1 ∈ ℤ)
7 sticksstones6.2 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
87nn0zd 12424 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
98adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝐾 ∈ ℤ)
109peano2zd 12429 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℤ)
11 elfznn 13285 . . . . . . . . 9 (𝑖 ∈ (1...𝑋) → 𝑖 ∈ ℕ)
1211adantl 482 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℕ)
1312nnzd 12425 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℤ)
1412nnge1d 12021 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 1 ≤ 𝑖)
1512nnred 11988 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℝ)
169zred 12426 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝐾 ∈ ℝ)
1710zred 12426 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℝ)
183adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑋 ∈ ℕ)
1918nnred 11988 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑋 ∈ ℝ)
20 elfzle2 13260 . . . . . . . . . 10 (𝑖 ∈ (1...𝑋) → 𝑖𝑋)
2120adantl 482 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖𝑋)
22 elfzle2 13260 . . . . . . . . . . 11 (𝑋 ∈ (1...𝐾) → 𝑋𝐾)
231, 22syl 17 . . . . . . . . . 10 (𝜑𝑋𝐾)
2423adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑋𝐾)
2515, 19, 16, 21, 24letrd 11132 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖𝐾)
2616lep1d 11906 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝐾 ≤ (𝐾 + 1))
2715, 16, 17, 25, 26letrd 11132 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ≤ (𝐾 + 1))
286, 10, 13, 14, 27elfzd 13247 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ (1...(𝐾 + 1)))
29 sticksstones6.3 . . . . . . . . 9 (𝜑𝐺:(1...(𝐾 + 1))⟶ℕ0)
3029adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝐾 + 1))) → 𝐺:(1...(𝐾 + 1))⟶ℕ0)
31 simpr 485 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝐾 + 1))) → 𝑖 ∈ (1...(𝐾 + 1)))
3230, 31ffvelrnd 6962 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
3332adantlr 712 . . . . . 6 (((𝜑𝑖 ∈ (1...𝑋)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
3428, 33mpdan 684 . . . . 5 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐺𝑖) ∈ ℕ0)
355, 34fsumnn0cl 15448 . . . 4 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ∈ ℕ0)
3635nn0red 12294 . . 3 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ∈ ℝ)
37 sticksstones6.5 . . . . 5 (𝜑𝑌 ∈ (1...𝐾))
38 elfznn 13285 . . . . 5 (𝑌 ∈ (1...𝐾) → 𝑌 ∈ ℕ)
3937, 38syl 17 . . . 4 (𝜑𝑌 ∈ ℕ)
4039nnred 11988 . . 3 (𝜑𝑌 ∈ ℝ)
41 fzfid 13693 . . . . 5 (𝜑 → ((𝑋 + 1)...𝑌) ∈ Fin)
42 1zzd 12351 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ∈ ℤ)
438adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝐾 ∈ ℤ)
4443peano2zd 12429 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐾 + 1) ∈ ℤ)
45 elfzelz 13256 . . . . . . . . 9 (𝑖 ∈ ((𝑋 + 1)...𝑌) → 𝑖 ∈ ℤ)
4645adantl 482 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ∈ ℤ)
47 1red 10976 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ∈ ℝ)
484adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑋 ∈ ℝ)
4948, 47readdcld 11004 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝑋 + 1) ∈ ℝ)
5046zred 12426 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ∈ ℝ)
51 1red 10976 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
524, 51readdcld 11004 . . . . . . . . . . 11 (𝜑 → (𝑋 + 1) ∈ ℝ)
533nnge1d 12021 . . . . . . . . . . 11 (𝜑 → 1 ≤ 𝑋)
544ltp1d 11905 . . . . . . . . . . . 12 (𝜑𝑋 < (𝑋 + 1))
554, 52, 54ltled 11123 . . . . . . . . . . 11 (𝜑𝑋 ≤ (𝑋 + 1))
5651, 4, 52, 53, 55letrd 11132 . . . . . . . . . 10 (𝜑 → 1 ≤ (𝑋 + 1))
5756adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ≤ (𝑋 + 1))
58 elfzle1 13259 . . . . . . . . . 10 (𝑖 ∈ ((𝑋 + 1)...𝑌) → (𝑋 + 1) ≤ 𝑖)
5958adantl 482 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝑋 + 1) ≤ 𝑖)
6047, 49, 50, 57, 59letrd 11132 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ≤ 𝑖)
6140adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑌 ∈ ℝ)
6244zred 12426 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐾 + 1) ∈ ℝ)
63 elfzle2 13260 . . . . . . . . . 10 (𝑖 ∈ ((𝑋 + 1)...𝑌) → 𝑖𝑌)
6463adantl 482 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖𝑌)
6543zred 12426 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝐾 ∈ ℝ)
66 elfzle2 13260 . . . . . . . . . . . 12 (𝑌 ∈ (1...𝐾) → 𝑌𝐾)
6737, 66syl 17 . . . . . . . . . . 11 (𝜑𝑌𝐾)
6867adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑌𝐾)
6965lep1d 11906 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝐾 ≤ (𝐾 + 1))
7061, 65, 62, 68, 69letrd 11132 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑌 ≤ (𝐾 + 1))
7150, 61, 62, 64, 70letrd 11132 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ≤ (𝐾 + 1))
7242, 44, 46, 60, 71elfzd 13247 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ∈ (1...(𝐾 + 1)))
7332adantlr 712 . . . . . . 7 (((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
7472, 73mpdan 684 . . . . . 6 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐺𝑖) ∈ ℕ0)
7574nn0red 12294 . . . . 5 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐺𝑖) ∈ ℝ)
7641, 75fsumrecl 15446 . . . 4 (𝜑 → Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖) ∈ ℝ)
7736, 76readdcld 11004 . . 3 (𝜑 → (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖)) ∈ ℝ)
78 sticksstones6.6 . . 3 (𝜑𝑋 < 𝑌)
7974nn0ge0d 12296 . . . . 5 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 0 ≤ (𝐺𝑖))
8041, 75, 79fsumge0 15507 . . . 4 (𝜑 → 0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))
8136, 76addge01d 11563 . . . 4 (𝜑 → (0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖) ↔ Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))))
8280, 81mpbid 231 . . 3 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖)))
834, 36, 40, 77, 78, 82ltleaddd 11596 . 2 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) < (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))))
84 sticksstones6.7 . . . . 5 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)))
8584a1i 11 . . . 4 (𝜑𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖))))
86 simpr 485 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
8786oveq2d 7291 . . . . . 6 ((𝜑𝑥 = 𝑋) → (1...𝑥) = (1...𝑋))
8887sumeq1d 15413 . . . . 5 ((𝜑𝑥 = 𝑋) → Σ𝑖 ∈ (1...𝑥)(𝐺𝑖) = Σ𝑖 ∈ (1...𝑋)(𝐺𝑖))
8986, 88oveq12d 7293 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
903nnnn0d 12293 . . . . 5 (𝜑𝑋 ∈ ℕ0)
9190, 35nn0addcld 12297 . . . 4 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ∈ ℕ0)
9285, 89, 1, 91fvmptd 6882 . . 3 (𝜑 → (𝐹𝑋) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
9392eqcomd 2744 . 2 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) = (𝐹𝑋))
94 simpr 485 . . . . . 6 ((𝜑𝑥 = 𝑌) → 𝑥 = 𝑌)
9594oveq2d 7291 . . . . . . 7 ((𝜑𝑥 = 𝑌) → (1...𝑥) = (1...𝑌))
9695sumeq1d 15413 . . . . . 6 ((𝜑𝑥 = 𝑌) → Σ𝑖 ∈ (1...𝑥)(𝐺𝑖) = Σ𝑖 ∈ (1...𝑌)(𝐺𝑖))
9794, 96oveq12d 7293 . . . . 5 ((𝜑𝑥 = 𝑌) → (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)) = (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺𝑖)))
9839nnnn0d 12293 . . . . . 6 (𝜑𝑌 ∈ ℕ0)
99 fzfid 13693 . . . . . . 7 (𝜑 → (1...𝑌) ∈ Fin)
100 1zzd 12351 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑌)) → 1 ∈ ℤ)
1018adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → 𝐾 ∈ ℤ)
102101peano2zd 12429 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑌)) → (𝐾 + 1) ∈ ℤ)
103 elfzelz 13256 . . . . . . . . . 10 (𝑖 ∈ (1...𝑌) → 𝑖 ∈ ℤ)
104103adantl 482 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑖 ∈ ℤ)
105 elfzle1 13259 . . . . . . . . . 10 (𝑖 ∈ (1...𝑌) → 1 ≤ 𝑖)
106105adantl 482 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑌)) → 1 ≤ 𝑖)
107104zred 12426 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑖 ∈ ℝ)
10840adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑌 ∈ ℝ)
109102zred 12426 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → (𝐾 + 1) ∈ ℝ)
110 elfzle2 13260 . . . . . . . . . . 11 (𝑖 ∈ (1...𝑌) → 𝑖𝑌)
111110adantl 482 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑖𝑌)
112101zred 12426 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑌)) → 𝐾 ∈ ℝ)
11367adantr 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑌𝐾)
114112lep1d 11906 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑌)) → 𝐾 ≤ (𝐾 + 1))
115108, 112, 109, 113, 114letrd 11132 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑌 ≤ (𝐾 + 1))
116107, 108, 109, 111, 115letrd 11132 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑖 ≤ (𝐾 + 1))
117100, 102, 104, 106, 116elfzd 13247 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑖 ∈ (1...(𝐾 + 1)))
11832adantlr 712 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑌)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
119117, 118mpdan 684 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑌)) → (𝐺𝑖) ∈ ℕ0)
12099, 119fsumnn0cl 15448 . . . . . 6 (𝜑 → Σ𝑖 ∈ (1...𝑌)(𝐺𝑖) ∈ ℕ0)
12198, 120nn0addcld 12297 . . . . 5 (𝜑 → (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺𝑖)) ∈ ℕ0)
12285, 97, 37, 121fvmptd 6882 . . . 4 (𝜑 → (𝐹𝑌) = (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺𝑖)))
123 fzdisj 13283 . . . . . . 7 (𝑋 < (𝑋 + 1) → ((1...𝑋) ∩ ((𝑋 + 1)...𝑌)) = ∅)
12454, 123syl 17 . . . . . 6 (𝜑 → ((1...𝑋) ∩ ((𝑋 + 1)...𝑌)) = ∅)
125 1zzd 12351 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
12698nn0zd 12424 . . . . . . . 8 (𝜑𝑌 ∈ ℤ)
12790nn0zd 12424 . . . . . . . 8 (𝜑𝑋 ∈ ℤ)
1284, 40, 78ltled 11123 . . . . . . . 8 (𝜑𝑋𝑌)
129125, 126, 127, 53, 128elfzd 13247 . . . . . . 7 (𝜑𝑋 ∈ (1...𝑌))
130 fzsplit 13282 . . . . . . 7 (𝑋 ∈ (1...𝑌) → (1...𝑌) = ((1...𝑋) ∪ ((𝑋 + 1)...𝑌)))
131129, 130syl 17 . . . . . 6 (𝜑 → (1...𝑌) = ((1...𝑋) ∪ ((𝑋 + 1)...𝑌)))
132119nn0red 12294 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑌)) → (𝐺𝑖) ∈ ℝ)
133132recnd 11003 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑌)) → (𝐺𝑖) ∈ ℂ)
134124, 131, 99, 133fsumsplit 15453 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝑌)(𝐺𝑖) = (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖)))
135134oveq2d 7291 . . . 4 (𝜑 → (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺𝑖)) = (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))))
136122, 135eqtrd 2778 . . 3 (𝜑 → (𝐹𝑌) = (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))))
137136eqcomd 2744 . 2 (𝜑 → (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))) = (𝐹𝑌))
13883, 93, 1373brtr3d 5105 1 (𝜑 → (𝐹𝑋) < (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cun 3885  cin 3886  c0 4256   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cn 11973  0cn0 12233  cz 12319  ...cfz 13239  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  sticksstones8  40109
  Copyright terms: Public domain W3C validator