Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones6 Structured version   Visualization version   GIF version

Theorem sticksstones6 42132
Description: Function induces an order isomorphism for sticks and stones theorem. (Contributed by metakunt, 1-Oct-2024.)
Hypotheses
Ref Expression
sticksstones6.1 (𝜑𝑁 ∈ ℕ0)
sticksstones6.2 (𝜑𝐾 ∈ ℕ0)
sticksstones6.3 (𝜑𝐺:(1...(𝐾 + 1))⟶ℕ0)
sticksstones6.4 (𝜑𝑋 ∈ (1...𝐾))
sticksstones6.5 (𝜑𝑌 ∈ (1...𝐾))
sticksstones6.6 (𝜑𝑋 < 𝑌)
sticksstones6.7 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)))
Assertion
Ref Expression
sticksstones6 (𝜑 → (𝐹𝑋) < (𝐹𝑌))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐾   𝑖,𝑋,𝑥   𝑖,𝑌,𝑥   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑖)   𝐺(𝑖)   𝐾(𝑖)   𝑁(𝑥,𝑖)

Proof of Theorem sticksstones6
StepHypRef Expression
1 sticksstones6.4 . . . . 5 (𝜑𝑋 ∈ (1...𝐾))
2 elfznn 13490 . . . . 5 (𝑋 ∈ (1...𝐾) → 𝑋 ∈ ℕ)
31, 2syl 17 . . . 4 (𝜑𝑋 ∈ ℕ)
43nnred 12177 . . 3 (𝜑𝑋 ∈ ℝ)
5 fzfid 13914 . . . . 5 (𝜑 → (1...𝑋) ∈ Fin)
6 1zzd 12540 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 1 ∈ ℤ)
7 sticksstones6.2 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
87nn0zd 12531 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
98adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝐾 ∈ ℤ)
109peano2zd 12617 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℤ)
11 elfznn 13490 . . . . . . . . 9 (𝑖 ∈ (1...𝑋) → 𝑖 ∈ ℕ)
1211adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℕ)
1312nnzd 12532 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℤ)
1412nnge1d 12210 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 1 ≤ 𝑖)
1512nnred 12177 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℝ)
169zred 12614 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝐾 ∈ ℝ)
1710zred 12614 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℝ)
183adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑋 ∈ ℕ)
1918nnred 12177 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑋 ∈ ℝ)
20 elfzle2 13465 . . . . . . . . . 10 (𝑖 ∈ (1...𝑋) → 𝑖𝑋)
2120adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖𝑋)
22 elfzle2 13465 . . . . . . . . . . 11 (𝑋 ∈ (1...𝐾) → 𝑋𝐾)
231, 22syl 17 . . . . . . . . . 10 (𝜑𝑋𝐾)
2423adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑋𝐾)
2515, 19, 16, 21, 24letrd 11307 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖𝐾)
2616lep1d 12090 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝐾 ≤ (𝐾 + 1))
2715, 16, 17, 25, 26letrd 11307 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ≤ (𝐾 + 1))
286, 10, 13, 14, 27elfzd 13452 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ (1...(𝐾 + 1)))
29 sticksstones6.3 . . . . . . . . 9 (𝜑𝐺:(1...(𝐾 + 1))⟶ℕ0)
3029adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝐾 + 1))) → 𝐺:(1...(𝐾 + 1))⟶ℕ0)
31 simpr 484 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝐾 + 1))) → 𝑖 ∈ (1...(𝐾 + 1)))
3230, 31ffvelcdmd 7039 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
3332adantlr 715 . . . . . 6 (((𝜑𝑖 ∈ (1...𝑋)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
3428, 33mpdan 687 . . . . 5 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐺𝑖) ∈ ℕ0)
355, 34fsumnn0cl 15678 . . . 4 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ∈ ℕ0)
3635nn0red 12480 . . 3 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ∈ ℝ)
37 sticksstones6.5 . . . . 5 (𝜑𝑌 ∈ (1...𝐾))
38 elfznn 13490 . . . . 5 (𝑌 ∈ (1...𝐾) → 𝑌 ∈ ℕ)
3937, 38syl 17 . . . 4 (𝜑𝑌 ∈ ℕ)
4039nnred 12177 . . 3 (𝜑𝑌 ∈ ℝ)
41 fzfid 13914 . . . . 5 (𝜑 → ((𝑋 + 1)...𝑌) ∈ Fin)
42 1zzd 12540 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ∈ ℤ)
438adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝐾 ∈ ℤ)
4443peano2zd 12617 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐾 + 1) ∈ ℤ)
45 elfzelz 13461 . . . . . . . . 9 (𝑖 ∈ ((𝑋 + 1)...𝑌) → 𝑖 ∈ ℤ)
4645adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ∈ ℤ)
47 1red 11151 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ∈ ℝ)
484adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑋 ∈ ℝ)
4948, 47readdcld 11179 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝑋 + 1) ∈ ℝ)
5046zred 12614 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ∈ ℝ)
51 1red 11151 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
524, 51readdcld 11179 . . . . . . . . . . 11 (𝜑 → (𝑋 + 1) ∈ ℝ)
533nnge1d 12210 . . . . . . . . . . 11 (𝜑 → 1 ≤ 𝑋)
544ltp1d 12089 . . . . . . . . . . . 12 (𝜑𝑋 < (𝑋 + 1))
554, 52, 54ltled 11298 . . . . . . . . . . 11 (𝜑𝑋 ≤ (𝑋 + 1))
5651, 4, 52, 53, 55letrd 11307 . . . . . . . . . 10 (𝜑 → 1 ≤ (𝑋 + 1))
5756adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ≤ (𝑋 + 1))
58 elfzle1 13464 . . . . . . . . . 10 (𝑖 ∈ ((𝑋 + 1)...𝑌) → (𝑋 + 1) ≤ 𝑖)
5958adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝑋 + 1) ≤ 𝑖)
6047, 49, 50, 57, 59letrd 11307 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ≤ 𝑖)
6140adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑌 ∈ ℝ)
6244zred 12614 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐾 + 1) ∈ ℝ)
63 elfzle2 13465 . . . . . . . . . 10 (𝑖 ∈ ((𝑋 + 1)...𝑌) → 𝑖𝑌)
6463adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖𝑌)
6543zred 12614 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝐾 ∈ ℝ)
66 elfzle2 13465 . . . . . . . . . . . 12 (𝑌 ∈ (1...𝐾) → 𝑌𝐾)
6737, 66syl 17 . . . . . . . . . . 11 (𝜑𝑌𝐾)
6867adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑌𝐾)
6965lep1d 12090 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝐾 ≤ (𝐾 + 1))
7061, 65, 62, 68, 69letrd 11307 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑌 ≤ (𝐾 + 1))
7150, 61, 62, 64, 70letrd 11307 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ≤ (𝐾 + 1))
7242, 44, 46, 60, 71elfzd 13452 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ∈ (1...(𝐾 + 1)))
7332adantlr 715 . . . . . . 7 (((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
7472, 73mpdan 687 . . . . . 6 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐺𝑖) ∈ ℕ0)
7574nn0red 12480 . . . . 5 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐺𝑖) ∈ ℝ)
7641, 75fsumrecl 15676 . . . 4 (𝜑 → Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖) ∈ ℝ)
7736, 76readdcld 11179 . . 3 (𝜑 → (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖)) ∈ ℝ)
78 sticksstones6.6 . . 3 (𝜑𝑋 < 𝑌)
7974nn0ge0d 12482 . . . . 5 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 0 ≤ (𝐺𝑖))
8041, 75, 79fsumge0 15737 . . . 4 (𝜑 → 0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))
8136, 76addge01d 11742 . . . 4 (𝜑 → (0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖) ↔ Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))))
8280, 81mpbid 232 . . 3 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖)))
834, 36, 40, 77, 78, 82ltleaddd 11775 . 2 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) < (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))))
84 sticksstones6.7 . . . . 5 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)))
8584a1i 11 . . . 4 (𝜑𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖))))
86 simpr 484 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
8786oveq2d 7385 . . . . . 6 ((𝜑𝑥 = 𝑋) → (1...𝑥) = (1...𝑋))
8887sumeq1d 15642 . . . . 5 ((𝜑𝑥 = 𝑋) → Σ𝑖 ∈ (1...𝑥)(𝐺𝑖) = Σ𝑖 ∈ (1...𝑋)(𝐺𝑖))
8986, 88oveq12d 7387 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
903nnnn0d 12479 . . . . 5 (𝜑𝑋 ∈ ℕ0)
9190, 35nn0addcld 12483 . . . 4 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ∈ ℕ0)
9285, 89, 1, 91fvmptd 6957 . . 3 (𝜑 → (𝐹𝑋) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
9392eqcomd 2735 . 2 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) = (𝐹𝑋))
94 simpr 484 . . . . . 6 ((𝜑𝑥 = 𝑌) → 𝑥 = 𝑌)
9594oveq2d 7385 . . . . . . 7 ((𝜑𝑥 = 𝑌) → (1...𝑥) = (1...𝑌))
9695sumeq1d 15642 . . . . . 6 ((𝜑𝑥 = 𝑌) → Σ𝑖 ∈ (1...𝑥)(𝐺𝑖) = Σ𝑖 ∈ (1...𝑌)(𝐺𝑖))
9794, 96oveq12d 7387 . . . . 5 ((𝜑𝑥 = 𝑌) → (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)) = (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺𝑖)))
9839nnnn0d 12479 . . . . . 6 (𝜑𝑌 ∈ ℕ0)
99 fzfid 13914 . . . . . . 7 (𝜑 → (1...𝑌) ∈ Fin)
100 1zzd 12540 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑌)) → 1 ∈ ℤ)
1018adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → 𝐾 ∈ ℤ)
102101peano2zd 12617 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑌)) → (𝐾 + 1) ∈ ℤ)
103 elfzelz 13461 . . . . . . . . . 10 (𝑖 ∈ (1...𝑌) → 𝑖 ∈ ℤ)
104103adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑖 ∈ ℤ)
105 elfzle1 13464 . . . . . . . . . 10 (𝑖 ∈ (1...𝑌) → 1 ≤ 𝑖)
106105adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑌)) → 1 ≤ 𝑖)
107104zred 12614 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑖 ∈ ℝ)
10840adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑌 ∈ ℝ)
109102zred 12614 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → (𝐾 + 1) ∈ ℝ)
110 elfzle2 13465 . . . . . . . . . . 11 (𝑖 ∈ (1...𝑌) → 𝑖𝑌)
111110adantl 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑖𝑌)
112101zred 12614 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑌)) → 𝐾 ∈ ℝ)
11367adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑌𝐾)
114112lep1d 12090 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑌)) → 𝐾 ≤ (𝐾 + 1))
115108, 112, 109, 113, 114letrd 11307 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑌 ≤ (𝐾 + 1))
116107, 108, 109, 111, 115letrd 11307 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑖 ≤ (𝐾 + 1))
117100, 102, 104, 106, 116elfzd 13452 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑖 ∈ (1...(𝐾 + 1)))
11832adantlr 715 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑌)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
119117, 118mpdan 687 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑌)) → (𝐺𝑖) ∈ ℕ0)
12099, 119fsumnn0cl 15678 . . . . . 6 (𝜑 → Σ𝑖 ∈ (1...𝑌)(𝐺𝑖) ∈ ℕ0)
12198, 120nn0addcld 12483 . . . . 5 (𝜑 → (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺𝑖)) ∈ ℕ0)
12285, 97, 37, 121fvmptd 6957 . . . 4 (𝜑 → (𝐹𝑌) = (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺𝑖)))
123 fzdisj 13488 . . . . . . 7 (𝑋 < (𝑋 + 1) → ((1...𝑋) ∩ ((𝑋 + 1)...𝑌)) = ∅)
12454, 123syl 17 . . . . . 6 (𝜑 → ((1...𝑋) ∩ ((𝑋 + 1)...𝑌)) = ∅)
125 1zzd 12540 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
12698nn0zd 12531 . . . . . . . 8 (𝜑𝑌 ∈ ℤ)
12790nn0zd 12531 . . . . . . . 8 (𝜑𝑋 ∈ ℤ)
1284, 40, 78ltled 11298 . . . . . . . 8 (𝜑𝑋𝑌)
129125, 126, 127, 53, 128elfzd 13452 . . . . . . 7 (𝜑𝑋 ∈ (1...𝑌))
130 fzsplit 13487 . . . . . . 7 (𝑋 ∈ (1...𝑌) → (1...𝑌) = ((1...𝑋) ∪ ((𝑋 + 1)...𝑌)))
131129, 130syl 17 . . . . . 6 (𝜑 → (1...𝑌) = ((1...𝑋) ∪ ((𝑋 + 1)...𝑌)))
132119nn0red 12480 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑌)) → (𝐺𝑖) ∈ ℝ)
133132recnd 11178 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑌)) → (𝐺𝑖) ∈ ℂ)
134124, 131, 99, 133fsumsplit 15683 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝑌)(𝐺𝑖) = (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖)))
135134oveq2d 7385 . . . 4 (𝜑 → (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺𝑖)) = (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))))
136122, 135eqtrd 2764 . . 3 (𝜑 → (𝐹𝑌) = (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))))
137136eqcomd 2735 . 2 (𝜑 → (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))) = (𝐹𝑌))
13883, 93, 1373brtr3d 5133 1 (𝜑 → (𝐹𝑋) < (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3909  cin 3910  c0 4292   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cn 12162  0cn0 12418  cz 12505  ...cfz 13444  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629
This theorem is referenced by:  sticksstones8  42134
  Copyright terms: Public domain W3C validator