Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones6 Structured version   Visualization version   GIF version

Theorem sticksstones6 42144
Description: Function induces an order isomorphism for sticks and stones theorem. (Contributed by metakunt, 1-Oct-2024.)
Hypotheses
Ref Expression
sticksstones6.1 (𝜑𝑁 ∈ ℕ0)
sticksstones6.2 (𝜑𝐾 ∈ ℕ0)
sticksstones6.3 (𝜑𝐺:(1...(𝐾 + 1))⟶ℕ0)
sticksstones6.4 (𝜑𝑋 ∈ (1...𝐾))
sticksstones6.5 (𝜑𝑌 ∈ (1...𝐾))
sticksstones6.6 (𝜑𝑋 < 𝑌)
sticksstones6.7 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)))
Assertion
Ref Expression
sticksstones6 (𝜑 → (𝐹𝑋) < (𝐹𝑌))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐾   𝑖,𝑋,𝑥   𝑖,𝑌,𝑥   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑖)   𝐺(𝑖)   𝐾(𝑖)   𝑁(𝑥,𝑖)

Proof of Theorem sticksstones6
StepHypRef Expression
1 sticksstones6.4 . . . . 5 (𝜑𝑋 ∈ (1...𝐾))
2 elfznn 13456 . . . . 5 (𝑋 ∈ (1...𝐾) → 𝑋 ∈ ℕ)
31, 2syl 17 . . . 4 (𝜑𝑋 ∈ ℕ)
43nnred 12143 . . 3 (𝜑𝑋 ∈ ℝ)
5 fzfid 13880 . . . . 5 (𝜑 → (1...𝑋) ∈ Fin)
6 1zzd 12506 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 1 ∈ ℤ)
7 sticksstones6.2 . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
87nn0zd 12497 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
98adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝐾 ∈ ℤ)
109peano2zd 12583 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℤ)
11 elfznn 13456 . . . . . . . . 9 (𝑖 ∈ (1...𝑋) → 𝑖 ∈ ℕ)
1211adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℕ)
1312nnzd 12498 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℤ)
1412nnge1d 12176 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 1 ≤ 𝑖)
1512nnred 12143 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ ℝ)
169zred 12580 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝐾 ∈ ℝ)
1710zred 12580 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐾 + 1) ∈ ℝ)
183adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑋 ∈ ℕ)
1918nnred 12143 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑋 ∈ ℝ)
20 elfzle2 13431 . . . . . . . . . 10 (𝑖 ∈ (1...𝑋) → 𝑖𝑋)
2120adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖𝑋)
22 elfzle2 13431 . . . . . . . . . . 11 (𝑋 ∈ (1...𝐾) → 𝑋𝐾)
231, 22syl 17 . . . . . . . . . 10 (𝜑𝑋𝐾)
2423adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑋𝐾)
2515, 19, 16, 21, 24letrd 11273 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖𝐾)
2616lep1d 12056 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑋)) → 𝐾 ≤ (𝐾 + 1))
2715, 16, 17, 25, 26letrd 11273 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ≤ (𝐾 + 1))
286, 10, 13, 14, 27elfzd 13418 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑋)) → 𝑖 ∈ (1...(𝐾 + 1)))
29 sticksstones6.3 . . . . . . . . 9 (𝜑𝐺:(1...(𝐾 + 1))⟶ℕ0)
3029adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝐾 + 1))) → 𝐺:(1...(𝐾 + 1))⟶ℕ0)
31 simpr 484 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝐾 + 1))) → 𝑖 ∈ (1...(𝐾 + 1)))
3230, 31ffvelcdmd 7019 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
3332adantlr 715 . . . . . 6 (((𝜑𝑖 ∈ (1...𝑋)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
3428, 33mpdan 687 . . . . 5 ((𝜑𝑖 ∈ (1...𝑋)) → (𝐺𝑖) ∈ ℕ0)
355, 34fsumnn0cl 15643 . . . 4 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ∈ ℕ0)
3635nn0red 12446 . . 3 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ∈ ℝ)
37 sticksstones6.5 . . . . 5 (𝜑𝑌 ∈ (1...𝐾))
38 elfznn 13456 . . . . 5 (𝑌 ∈ (1...𝐾) → 𝑌 ∈ ℕ)
3937, 38syl 17 . . . 4 (𝜑𝑌 ∈ ℕ)
4039nnred 12143 . . 3 (𝜑𝑌 ∈ ℝ)
41 fzfid 13880 . . . . 5 (𝜑 → ((𝑋 + 1)...𝑌) ∈ Fin)
42 1zzd 12506 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ∈ ℤ)
438adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝐾 ∈ ℤ)
4443peano2zd 12583 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐾 + 1) ∈ ℤ)
45 elfzelz 13427 . . . . . . . . 9 (𝑖 ∈ ((𝑋 + 1)...𝑌) → 𝑖 ∈ ℤ)
4645adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ∈ ℤ)
47 1red 11116 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ∈ ℝ)
484adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑋 ∈ ℝ)
4948, 47readdcld 11144 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝑋 + 1) ∈ ℝ)
5046zred 12580 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ∈ ℝ)
51 1red 11116 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
524, 51readdcld 11144 . . . . . . . . . . 11 (𝜑 → (𝑋 + 1) ∈ ℝ)
533nnge1d 12176 . . . . . . . . . . 11 (𝜑 → 1 ≤ 𝑋)
544ltp1d 12055 . . . . . . . . . . . 12 (𝜑𝑋 < (𝑋 + 1))
554, 52, 54ltled 11264 . . . . . . . . . . 11 (𝜑𝑋 ≤ (𝑋 + 1))
5651, 4, 52, 53, 55letrd 11273 . . . . . . . . . 10 (𝜑 → 1 ≤ (𝑋 + 1))
5756adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ≤ (𝑋 + 1))
58 elfzle1 13430 . . . . . . . . . 10 (𝑖 ∈ ((𝑋 + 1)...𝑌) → (𝑋 + 1) ≤ 𝑖)
5958adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝑋 + 1) ≤ 𝑖)
6047, 49, 50, 57, 59letrd 11273 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 1 ≤ 𝑖)
6140adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑌 ∈ ℝ)
6244zred 12580 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐾 + 1) ∈ ℝ)
63 elfzle2 13431 . . . . . . . . . 10 (𝑖 ∈ ((𝑋 + 1)...𝑌) → 𝑖𝑌)
6463adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖𝑌)
6543zred 12580 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝐾 ∈ ℝ)
66 elfzle2 13431 . . . . . . . . . . . 12 (𝑌 ∈ (1...𝐾) → 𝑌𝐾)
6737, 66syl 17 . . . . . . . . . . 11 (𝜑𝑌𝐾)
6867adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑌𝐾)
6965lep1d 12056 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝐾 ≤ (𝐾 + 1))
7061, 65, 62, 68, 69letrd 11273 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑌 ≤ (𝐾 + 1))
7150, 61, 62, 64, 70letrd 11273 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ≤ (𝐾 + 1))
7242, 44, 46, 60, 71elfzd 13418 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 𝑖 ∈ (1...(𝐾 + 1)))
7332adantlr 715 . . . . . . 7 (((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
7472, 73mpdan 687 . . . . . 6 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐺𝑖) ∈ ℕ0)
7574nn0red 12446 . . . . 5 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → (𝐺𝑖) ∈ ℝ)
7641, 75fsumrecl 15641 . . . 4 (𝜑 → Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖) ∈ ℝ)
7736, 76readdcld 11144 . . 3 (𝜑 → (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖)) ∈ ℝ)
78 sticksstones6.6 . . 3 (𝜑𝑋 < 𝑌)
7974nn0ge0d 12448 . . . . 5 ((𝜑𝑖 ∈ ((𝑋 + 1)...𝑌)) → 0 ≤ (𝐺𝑖))
8041, 75, 79fsumge0 15702 . . . 4 (𝜑 → 0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))
8136, 76addge01d 11708 . . . 4 (𝜑 → (0 ≤ Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖) ↔ Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))))
8280, 81mpbid 232 . . 3 (𝜑 → Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) ≤ (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖)))
834, 36, 40, 77, 78, 82ltleaddd 11741 . 2 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) < (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))))
84 sticksstones6.7 . . . . 5 𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)))
8584a1i 11 . . . 4 (𝜑𝐹 = (𝑥 ∈ (1...𝐾) ↦ (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖))))
86 simpr 484 . . . . 5 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
8786oveq2d 7365 . . . . . 6 ((𝜑𝑥 = 𝑋) → (1...𝑥) = (1...𝑋))
8887sumeq1d 15607 . . . . 5 ((𝜑𝑥 = 𝑋) → Σ𝑖 ∈ (1...𝑥)(𝐺𝑖) = Σ𝑖 ∈ (1...𝑋)(𝐺𝑖))
8986, 88oveq12d 7367 . . . 4 ((𝜑𝑥 = 𝑋) → (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
903nnnn0d 12445 . . . . 5 (𝜑𝑋 ∈ ℕ0)
9190, 35nn0addcld 12449 . . . 4 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) ∈ ℕ0)
9285, 89, 1, 91fvmptd 6937 . . 3 (𝜑 → (𝐹𝑋) = (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)))
9392eqcomd 2735 . 2 (𝜑 → (𝑋 + Σ𝑖 ∈ (1...𝑋)(𝐺𝑖)) = (𝐹𝑋))
94 simpr 484 . . . . . 6 ((𝜑𝑥 = 𝑌) → 𝑥 = 𝑌)
9594oveq2d 7365 . . . . . . 7 ((𝜑𝑥 = 𝑌) → (1...𝑥) = (1...𝑌))
9695sumeq1d 15607 . . . . . 6 ((𝜑𝑥 = 𝑌) → Σ𝑖 ∈ (1...𝑥)(𝐺𝑖) = Σ𝑖 ∈ (1...𝑌)(𝐺𝑖))
9794, 96oveq12d 7367 . . . . 5 ((𝜑𝑥 = 𝑌) → (𝑥 + Σ𝑖 ∈ (1...𝑥)(𝐺𝑖)) = (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺𝑖)))
9839nnnn0d 12445 . . . . . 6 (𝜑𝑌 ∈ ℕ0)
99 fzfid 13880 . . . . . . 7 (𝜑 → (1...𝑌) ∈ Fin)
100 1zzd 12506 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑌)) → 1 ∈ ℤ)
1018adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → 𝐾 ∈ ℤ)
102101peano2zd 12583 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑌)) → (𝐾 + 1) ∈ ℤ)
103 elfzelz 13427 . . . . . . . . . 10 (𝑖 ∈ (1...𝑌) → 𝑖 ∈ ℤ)
104103adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑖 ∈ ℤ)
105 elfzle1 13430 . . . . . . . . . 10 (𝑖 ∈ (1...𝑌) → 1 ≤ 𝑖)
106105adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑌)) → 1 ≤ 𝑖)
107104zred 12580 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑖 ∈ ℝ)
10840adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑌 ∈ ℝ)
109102zred 12580 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → (𝐾 + 1) ∈ ℝ)
110 elfzle2 13431 . . . . . . . . . . 11 (𝑖 ∈ (1...𝑌) → 𝑖𝑌)
111110adantl 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑖𝑌)
112101zred 12580 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑌)) → 𝐾 ∈ ℝ)
11367adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑌𝐾)
114112lep1d 12056 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑌)) → 𝐾 ≤ (𝐾 + 1))
115108, 112, 109, 113, 114letrd 11273 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑌 ≤ (𝐾 + 1))
116107, 108, 109, 111, 115letrd 11273 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑖 ≤ (𝐾 + 1))
117100, 102, 104, 106, 116elfzd 13418 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑌)) → 𝑖 ∈ (1...(𝐾 + 1)))
11832adantlr 715 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑌)) ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝐺𝑖) ∈ ℕ0)
119117, 118mpdan 687 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑌)) → (𝐺𝑖) ∈ ℕ0)
12099, 119fsumnn0cl 15643 . . . . . 6 (𝜑 → Σ𝑖 ∈ (1...𝑌)(𝐺𝑖) ∈ ℕ0)
12198, 120nn0addcld 12449 . . . . 5 (𝜑 → (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺𝑖)) ∈ ℕ0)
12285, 97, 37, 121fvmptd 6937 . . . 4 (𝜑 → (𝐹𝑌) = (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺𝑖)))
123 fzdisj 13454 . . . . . . 7 (𝑋 < (𝑋 + 1) → ((1...𝑋) ∩ ((𝑋 + 1)...𝑌)) = ∅)
12454, 123syl 17 . . . . . 6 (𝜑 → ((1...𝑋) ∩ ((𝑋 + 1)...𝑌)) = ∅)
125 1zzd 12506 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
12698nn0zd 12497 . . . . . . . 8 (𝜑𝑌 ∈ ℤ)
12790nn0zd 12497 . . . . . . . 8 (𝜑𝑋 ∈ ℤ)
1284, 40, 78ltled 11264 . . . . . . . 8 (𝜑𝑋𝑌)
129125, 126, 127, 53, 128elfzd 13418 . . . . . . 7 (𝜑𝑋 ∈ (1...𝑌))
130 fzsplit 13453 . . . . . . 7 (𝑋 ∈ (1...𝑌) → (1...𝑌) = ((1...𝑋) ∪ ((𝑋 + 1)...𝑌)))
131129, 130syl 17 . . . . . 6 (𝜑 → (1...𝑌) = ((1...𝑋) ∪ ((𝑋 + 1)...𝑌)))
132119nn0red 12446 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑌)) → (𝐺𝑖) ∈ ℝ)
133132recnd 11143 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑌)) → (𝐺𝑖) ∈ ℂ)
134124, 131, 99, 133fsumsplit 15648 . . . . 5 (𝜑 → Σ𝑖 ∈ (1...𝑌)(𝐺𝑖) = (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖)))
135134oveq2d 7365 . . . 4 (𝜑 → (𝑌 + Σ𝑖 ∈ (1...𝑌)(𝐺𝑖)) = (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))))
136122, 135eqtrd 2764 . . 3 (𝜑 → (𝐹𝑌) = (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))))
137136eqcomd 2735 . 2 (𝜑 → (𝑌 + (Σ𝑖 ∈ (1...𝑋)(𝐺𝑖) + Σ𝑖 ∈ ((𝑋 + 1)...𝑌)(𝐺𝑖))) = (𝐹𝑌))
13883, 93, 1373brtr3d 5123 1 (𝜑 → (𝐹𝑋) < (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3901  cin 3902  c0 4284   class class class wbr 5092  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cle 11150  cn 12128  0cn0 12384  cz 12471  ...cfz 13410  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  sticksstones8  42146
  Copyright terms: Public domain W3C validator