MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumless Structured version   Visualization version   GIF version

Theorem fsumless 15769
Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by NM, 26-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumge0.1 (𝜑𝐴 ∈ Fin)
fsumge0.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fsumge0.3 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
fsumless.4 (𝜑𝐶𝐴)
Assertion
Ref Expression
fsumless (𝜑 → Σ𝑘𝐶 𝐵 ≤ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumless
StepHypRef Expression
1 fsumge0.1 . . . . 5 (𝜑𝐴 ∈ Fin)
2 difss 4128 . . . . 5 (𝐴𝐶) ⊆ 𝐴
3 ssfi 9192 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐴𝐶) ⊆ 𝐴) → (𝐴𝐶) ∈ Fin)
41, 2, 3sylancl 585 . . . 4 (𝜑 → (𝐴𝐶) ∈ Fin)
5 eldifi 4123 . . . . 5 (𝑘 ∈ (𝐴𝐶) → 𝑘𝐴)
6 fsumge0.2 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
75, 6sylan2 592 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
8 fsumge0.3 . . . . 5 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
95, 8sylan2 592 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐶)) → 0 ≤ 𝐵)
104, 7, 9fsumge0 15768 . . 3 (𝜑 → 0 ≤ Σ𝑘 ∈ (𝐴𝐶)𝐵)
11 fsumless.4 . . . . . 6 (𝜑𝐶𝐴)
121, 11ssfid 9286 . . . . 5 (𝜑𝐶 ∈ Fin)
1311sselda 3979 . . . . . 6 ((𝜑𝑘𝐶) → 𝑘𝐴)
1413, 6syldan 590 . . . . 5 ((𝜑𝑘𝐶) → 𝐵 ∈ ℝ)
1512, 14fsumrecl 15707 . . . 4 (𝜑 → Σ𝑘𝐶 𝐵 ∈ ℝ)
164, 7fsumrecl 15707 . . . 4 (𝜑 → Σ𝑘 ∈ (𝐴𝐶)𝐵 ∈ ℝ)
1715, 16addge01d 11827 . . 3 (𝜑 → (0 ≤ Σ𝑘 ∈ (𝐴𝐶)𝐵 ↔ Σ𝑘𝐶 𝐵 ≤ (Σ𝑘𝐶 𝐵 + Σ𝑘 ∈ (𝐴𝐶)𝐵)))
1810, 17mpbid 231 . 2 (𝜑 → Σ𝑘𝐶 𝐵 ≤ (Σ𝑘𝐶 𝐵 + Σ𝑘 ∈ (𝐴𝐶)𝐵))
19 disjdif 4468 . . . 4 (𝐶 ∩ (𝐴𝐶)) = ∅
2019a1i 11 . . 3 (𝜑 → (𝐶 ∩ (𝐴𝐶)) = ∅)
21 undif 4478 . . . . 5 (𝐶𝐴 ↔ (𝐶 ∪ (𝐴𝐶)) = 𝐴)
2211, 21sylib 217 . . . 4 (𝜑 → (𝐶 ∪ (𝐴𝐶)) = 𝐴)
2322eqcomd 2734 . . 3 (𝜑𝐴 = (𝐶 ∪ (𝐴𝐶)))
246recnd 11267 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2520, 23, 1, 24fsumsplit 15714 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = (Σ𝑘𝐶 𝐵 + Σ𝑘 ∈ (𝐴𝐶)𝐵))
2618, 25breqtrrd 5171 1 (𝜑 → Σ𝑘𝐶 𝐵 ≤ Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cdif 3942  cun 3943  cin 3944  wss 3945  c0 4319   class class class wbr 5143  (class class class)co 7415  Fincfn 8958  cr 11132  0cc0 11133   + caddc 11136  cle 11274  Σcsu 15659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-sup 9460  df-oi 9528  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-z 12584  df-uz 12848  df-rp 13002  df-ico 13357  df-fz 13512  df-fzo 13655  df-seq 13994  df-exp 14054  df-hash 14317  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-clim 15459  df-sum 15660
This theorem is referenced by:  fsumge1  15770  fsum00  15771  ovolicc2lem4  25443  fsumharmonic  26938  chtwordi  27082  chpwordi  27083  chtlepsi  27133  chtublem  27138  perfectlem2  27157  chtppilimlem1  27400  vmadivsumb  27410  rplogsumlem2  27412  rpvmasumlem  27414  dchrvmasumiflem1  27428  rplogsum  27454  dirith2  27455  mulog2sumlem2  27462  selbergb  27476  selberg2b  27479  chpdifbndlem1  27480  logdivbnd  27483  selberg3lem2  27485  pntrsumbnd  27493  pntlemf  27532  fsumiunle  32587  esumpcvgval  33692  eulerpartlemgc  33977  reprinfz1  34249  hgt750lemb  34283  fsumlessf  44956  sge0fsum  45766  sge0xaddlem1  45812  sge0seq  45825  carageniuncllem2  45901  perfectALTVlem2  47053
  Copyright terms: Public domain W3C validator