| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsumless | Structured version Visualization version GIF version | ||
| Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by NM, 26-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsumge0.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsumge0.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| fsumge0.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) |
| fsumless.4 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| fsumless | ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumge0.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | difss 4085 | . . . . 5 ⊢ (𝐴 ∖ 𝐶) ⊆ 𝐴 | |
| 3 | ssfi 9091 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∖ 𝐶) ⊆ 𝐴) → (𝐴 ∖ 𝐶) ∈ Fin) | |
| 4 | 1, 2, 3 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ∈ Fin) |
| 5 | eldifi 4080 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∖ 𝐶) → 𝑘 ∈ 𝐴) | |
| 6 | fsumge0.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 7 | 5, 6 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝐶)) → 𝐵 ∈ ℝ) |
| 8 | fsumge0.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) | |
| 9 | 5, 8 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝐶)) → 0 ≤ 𝐵) |
| 10 | 4, 7, 9 | fsumge0 15706 | . . 3 ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ (𝐴 ∖ 𝐶)𝐵) |
| 11 | fsumless.4 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 12 | 1, 11 | ssfid 9162 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Fin) |
| 13 | 11 | sselda 3930 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝑘 ∈ 𝐴) |
| 14 | 13, 6 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐵 ∈ ℝ) |
| 15 | 12, 14 | fsumrecl 15645 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ∈ ℝ) |
| 16 | 4, 7 | fsumrecl 15645 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∖ 𝐶)𝐵 ∈ ℝ) |
| 17 | 15, 16 | addge01d 11714 | . . 3 ⊢ (𝜑 → (0 ≤ Σ𝑘 ∈ (𝐴 ∖ 𝐶)𝐵 ↔ Σ𝑘 ∈ 𝐶 𝐵 ≤ (Σ𝑘 ∈ 𝐶 𝐵 + Σ𝑘 ∈ (𝐴 ∖ 𝐶)𝐵))) |
| 18 | 10, 17 | mpbid 232 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ (Σ𝑘 ∈ 𝐶 𝐵 + Σ𝑘 ∈ (𝐴 ∖ 𝐶)𝐵)) |
| 19 | disjdif 4421 | . . . 4 ⊢ (𝐶 ∩ (𝐴 ∖ 𝐶)) = ∅ | |
| 20 | 19 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐶 ∩ (𝐴 ∖ 𝐶)) = ∅) |
| 21 | undif 4431 | . . . . 5 ⊢ (𝐶 ⊆ 𝐴 ↔ (𝐶 ∪ (𝐴 ∖ 𝐶)) = 𝐴) | |
| 22 | 11, 21 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐶 ∪ (𝐴 ∖ 𝐶)) = 𝐴) |
| 23 | 22 | eqcomd 2739 | . . 3 ⊢ (𝜑 → 𝐴 = (𝐶 ∪ (𝐴 ∖ 𝐶))) |
| 24 | 6 | recnd 11149 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 25 | 20, 23, 1, 24 | fsumsplit 15652 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (Σ𝑘 ∈ 𝐶 𝐵 + Σ𝑘 ∈ (𝐴 ∖ 𝐶)𝐵)) |
| 26 | 18, 25 | breqtrrd 5123 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ∪ cun 3896 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 class class class wbr 5095 (class class class)co 7354 Fincfn 8877 ℝcr 11014 0cc0 11015 + caddc 11018 ≤ cle 11156 Σcsu 15597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-ico 13255 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-sum 15598 |
| This theorem is referenced by: fsumge1 15708 fsum00 15709 ovolicc2lem4 25451 fsumharmonic 26952 chtwordi 27096 chpwordi 27097 chtlepsi 27147 chtublem 27152 perfectlem2 27171 chtppilimlem1 27414 vmadivsumb 27424 rplogsumlem2 27426 rpvmasumlem 27428 dchrvmasumiflem1 27442 rplogsum 27468 dirith2 27469 mulog2sumlem2 27476 selbergb 27490 selberg2b 27493 chpdifbndlem1 27494 logdivbnd 27497 selberg3lem2 27499 pntrsumbnd 27507 pntlemf 27546 fsumiunle 32819 esumpcvgval 34114 eulerpartlemgc 34398 reprinfz1 34658 hgt750lemb 34692 fsumlessf 45704 sge0fsum 46512 sge0xaddlem1 46558 sge0seq 46571 carageniuncllem2 46647 perfectALTVlem2 47849 |
| Copyright terms: Public domain | W3C validator |