MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumless Structured version   Visualization version   GIF version

Theorem fsumless 14735
Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by NM, 26-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumge0.1 (𝜑𝐴 ∈ Fin)
fsumge0.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fsumge0.3 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
fsumless.4 (𝜑𝐶𝐴)
Assertion
Ref Expression
fsumless (𝜑 → Σ𝑘𝐶 𝐵 ≤ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumless
StepHypRef Expression
1 fsumge0.1 . . . . 5 (𝜑𝐴 ∈ Fin)
2 difss 3888 . . . . 5 (𝐴𝐶) ⊆ 𝐴
3 ssfi 8340 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐴𝐶) ⊆ 𝐴) → (𝐴𝐶) ∈ Fin)
41, 2, 3sylancl 574 . . . 4 (𝜑 → (𝐴𝐶) ∈ Fin)
5 eldifi 3883 . . . . 5 (𝑘 ∈ (𝐴𝐶) → 𝑘𝐴)
6 fsumge0.2 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
75, 6sylan2 580 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
8 fsumge0.3 . . . . 5 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
95, 8sylan2 580 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐶)) → 0 ≤ 𝐵)
104, 7, 9fsumge0 14734 . . 3 (𝜑 → 0 ≤ Σ𝑘 ∈ (𝐴𝐶)𝐵)
11 fsumless.4 . . . . . 6 (𝜑𝐶𝐴)
12 ssfi 8340 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐶𝐴) → 𝐶 ∈ Fin)
131, 11, 12syl2anc 573 . . . . 5 (𝜑𝐶 ∈ Fin)
1411sselda 3752 . . . . . 6 ((𝜑𝑘𝐶) → 𝑘𝐴)
1514, 6syldan 579 . . . . 5 ((𝜑𝑘𝐶) → 𝐵 ∈ ℝ)
1613, 15fsumrecl 14673 . . . 4 (𝜑 → Σ𝑘𝐶 𝐵 ∈ ℝ)
174, 7fsumrecl 14673 . . . 4 (𝜑 → Σ𝑘 ∈ (𝐴𝐶)𝐵 ∈ ℝ)
1816, 17addge01d 10821 . . 3 (𝜑 → (0 ≤ Σ𝑘 ∈ (𝐴𝐶)𝐵 ↔ Σ𝑘𝐶 𝐵 ≤ (Σ𝑘𝐶 𝐵 + Σ𝑘 ∈ (𝐴𝐶)𝐵)))
1910, 18mpbid 222 . 2 (𝜑 → Σ𝑘𝐶 𝐵 ≤ (Σ𝑘𝐶 𝐵 + Σ𝑘 ∈ (𝐴𝐶)𝐵))
20 disjdif 4183 . . . 4 (𝐶 ∩ (𝐴𝐶)) = ∅
2120a1i 11 . . 3 (𝜑 → (𝐶 ∩ (𝐴𝐶)) = ∅)
22 undif 4192 . . . . 5 (𝐶𝐴 ↔ (𝐶 ∪ (𝐴𝐶)) = 𝐴)
2311, 22sylib 208 . . . 4 (𝜑 → (𝐶 ∪ (𝐴𝐶)) = 𝐴)
2423eqcomd 2777 . . 3 (𝜑𝐴 = (𝐶 ∪ (𝐴𝐶)))
256recnd 10274 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2621, 24, 1, 25fsumsplit 14679 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = (Σ𝑘𝐶 𝐵 + Σ𝑘 ∈ (𝐴𝐶)𝐵))
2719, 26breqtrrd 4815 1 (𝜑 → Σ𝑘𝐶 𝐵 ≤ Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cdif 3720  cun 3721  cin 3722  wss 3723  c0 4063   class class class wbr 4787  (class class class)co 6796  Fincfn 8113  cr 10141  0cc0 10142   + caddc 10145  cle 10281  Σcsu 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-oi 8575  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-ico 12386  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625
This theorem is referenced by:  fsumge1  14736  fsum00  14737  ovolicc2lem4  23508  fsumharmonic  24959  chtwordi  25103  chpwordi  25104  chtlepsi  25152  chtublem  25157  perfectlem2  25176  chtppilimlem1  25383  vmadivsumb  25393  rplogsumlem2  25395  rpvmasumlem  25397  dchrvmasumiflem1  25411  rplogsum  25437  dirith2  25438  mulog2sumlem2  25445  selbergb  25459  selberg2b  25462  chpdifbndlem1  25463  logdivbnd  25466  selberg3lem2  25468  pntrsumbnd  25476  pntlemf  25515  fsumiunle  29915  esumpcvgval  30480  eulerpartlemgc  30764  reprinfz1  31040  hgt750lemb  31074  fsumlessf  40322  sge0fsum  41116  sge0xaddlem1  41162  sge0seq  41175  carageniuncllem2  41251  perfectALTVlem2  42154
  Copyright terms: Public domain W3C validator