| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsumless | Structured version Visualization version GIF version | ||
| Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by NM, 26-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsumge0.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsumge0.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| fsumge0.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) |
| fsumless.4 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| fsumless | ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumge0.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | difss 4086 | . . . . 5 ⊢ (𝐴 ∖ 𝐶) ⊆ 𝐴 | |
| 3 | ssfi 9082 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∖ 𝐶) ⊆ 𝐴) → (𝐴 ∖ 𝐶) ∈ Fin) | |
| 4 | 1, 2, 3 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ∈ Fin) |
| 5 | eldifi 4081 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∖ 𝐶) → 𝑘 ∈ 𝐴) | |
| 6 | fsumge0.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 7 | 5, 6 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝐶)) → 𝐵 ∈ ℝ) |
| 8 | fsumge0.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) | |
| 9 | 5, 8 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝐶)) → 0 ≤ 𝐵) |
| 10 | 4, 7, 9 | fsumge0 15702 | . . 3 ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ (𝐴 ∖ 𝐶)𝐵) |
| 11 | fsumless.4 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 12 | 1, 11 | ssfid 9153 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Fin) |
| 13 | 11 | sselda 3934 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝑘 ∈ 𝐴) |
| 14 | 13, 6 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐵 ∈ ℝ) |
| 15 | 12, 14 | fsumrecl 15641 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ∈ ℝ) |
| 16 | 4, 7 | fsumrecl 15641 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∖ 𝐶)𝐵 ∈ ℝ) |
| 17 | 15, 16 | addge01d 11705 | . . 3 ⊢ (𝜑 → (0 ≤ Σ𝑘 ∈ (𝐴 ∖ 𝐶)𝐵 ↔ Σ𝑘 ∈ 𝐶 𝐵 ≤ (Σ𝑘 ∈ 𝐶 𝐵 + Σ𝑘 ∈ (𝐴 ∖ 𝐶)𝐵))) |
| 18 | 10, 17 | mpbid 232 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ (Σ𝑘 ∈ 𝐶 𝐵 + Σ𝑘 ∈ (𝐴 ∖ 𝐶)𝐵)) |
| 19 | disjdif 4422 | . . . 4 ⊢ (𝐶 ∩ (𝐴 ∖ 𝐶)) = ∅ | |
| 20 | 19 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐶 ∩ (𝐴 ∖ 𝐶)) = ∅) |
| 21 | undif 4432 | . . . . 5 ⊢ (𝐶 ⊆ 𝐴 ↔ (𝐶 ∪ (𝐴 ∖ 𝐶)) = 𝐴) | |
| 22 | 11, 21 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐶 ∪ (𝐴 ∖ 𝐶)) = 𝐴) |
| 23 | 22 | eqcomd 2737 | . . 3 ⊢ (𝜑 → 𝐴 = (𝐶 ∪ (𝐴 ∖ 𝐶))) |
| 24 | 6 | recnd 11140 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 25 | 20, 23, 1, 24 | fsumsplit 15648 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (Σ𝑘 ∈ 𝐶 𝐵 + Σ𝑘 ∈ (𝐴 ∖ 𝐶)𝐵)) |
| 26 | 18, 25 | breqtrrd 5119 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐶 𝐵 ≤ Σ𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 ∪ cun 3900 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 class class class wbr 5091 (class class class)co 7346 Fincfn 8869 ℝcr 11005 0cc0 11006 + caddc 11009 ≤ cle 11147 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-ico 13251 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 |
| This theorem is referenced by: fsumge1 15704 fsum00 15705 ovolicc2lem4 25449 fsumharmonic 26950 chtwordi 27094 chpwordi 27095 chtlepsi 27145 chtublem 27150 perfectlem2 27169 chtppilimlem1 27412 vmadivsumb 27422 rplogsumlem2 27424 rpvmasumlem 27426 dchrvmasumiflem1 27440 rplogsum 27466 dirith2 27467 mulog2sumlem2 27474 selbergb 27488 selberg2b 27491 chpdifbndlem1 27492 logdivbnd 27495 selberg3lem2 27497 pntrsumbnd 27505 pntlemf 27544 fsumiunle 32810 esumpcvgval 34089 eulerpartlemgc 34373 reprinfz1 34633 hgt750lemb 34667 fsumlessf 45623 sge0fsum 46431 sge0xaddlem1 46477 sge0seq 46490 carageniuncllem2 46566 perfectALTVlem2 47759 |
| Copyright terms: Public domain | W3C validator |