MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumless Structured version   Visualization version   GIF version

Theorem fsumless 15738
Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by NM, 26-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumge0.1 (𝜑𝐴 ∈ Fin)
fsumge0.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fsumge0.3 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
fsumless.4 (𝜑𝐶𝐴)
Assertion
Ref Expression
fsumless (𝜑 → Σ𝑘𝐶 𝐵 ≤ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumless
StepHypRef Expression
1 fsumge0.1 . . . . 5 (𝜑𝐴 ∈ Fin)
2 difss 4123 . . . . 5 (𝐴𝐶) ⊆ 𝐴
3 ssfi 9168 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐴𝐶) ⊆ 𝐴) → (𝐴𝐶) ∈ Fin)
41, 2, 3sylancl 585 . . . 4 (𝜑 → (𝐴𝐶) ∈ Fin)
5 eldifi 4118 . . . . 5 (𝑘 ∈ (𝐴𝐶) → 𝑘𝐴)
6 fsumge0.2 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
75, 6sylan2 592 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
8 fsumge0.3 . . . . 5 ((𝜑𝑘𝐴) → 0 ≤ 𝐵)
95, 8sylan2 592 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐶)) → 0 ≤ 𝐵)
104, 7, 9fsumge0 15737 . . 3 (𝜑 → 0 ≤ Σ𝑘 ∈ (𝐴𝐶)𝐵)
11 fsumless.4 . . . . . 6 (𝜑𝐶𝐴)
121, 11ssfid 9262 . . . . 5 (𝜑𝐶 ∈ Fin)
1311sselda 3974 . . . . . 6 ((𝜑𝑘𝐶) → 𝑘𝐴)
1413, 6syldan 590 . . . . 5 ((𝜑𝑘𝐶) → 𝐵 ∈ ℝ)
1512, 14fsumrecl 15676 . . . 4 (𝜑 → Σ𝑘𝐶 𝐵 ∈ ℝ)
164, 7fsumrecl 15676 . . . 4 (𝜑 → Σ𝑘 ∈ (𝐴𝐶)𝐵 ∈ ℝ)
1715, 16addge01d 11798 . . 3 (𝜑 → (0 ≤ Σ𝑘 ∈ (𝐴𝐶)𝐵 ↔ Σ𝑘𝐶 𝐵 ≤ (Σ𝑘𝐶 𝐵 + Σ𝑘 ∈ (𝐴𝐶)𝐵)))
1810, 17mpbid 231 . 2 (𝜑 → Σ𝑘𝐶 𝐵 ≤ (Σ𝑘𝐶 𝐵 + Σ𝑘 ∈ (𝐴𝐶)𝐵))
19 disjdif 4463 . . . 4 (𝐶 ∩ (𝐴𝐶)) = ∅
2019a1i 11 . . 3 (𝜑 → (𝐶 ∩ (𝐴𝐶)) = ∅)
21 undif 4473 . . . . 5 (𝐶𝐴 ↔ (𝐶 ∪ (𝐴𝐶)) = 𝐴)
2211, 21sylib 217 . . . 4 (𝜑 → (𝐶 ∪ (𝐴𝐶)) = 𝐴)
2322eqcomd 2730 . . 3 (𝜑𝐴 = (𝐶 ∪ (𝐴𝐶)))
246recnd 11238 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2520, 23, 1, 24fsumsplit 15683 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = (Σ𝑘𝐶 𝐵 + Σ𝑘 ∈ (𝐴𝐶)𝐵))
2618, 25breqtrrd 5166 1 (𝜑 → Σ𝑘𝐶 𝐵 ≤ Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cdif 3937  cun 3938  cin 3939  wss 3940  c0 4314   class class class wbr 5138  (class class class)co 7401  Fincfn 8934  cr 11104  0cc0 11105   + caddc 11108  cle 11245  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9631  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-sup 9432  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629
This theorem is referenced by:  fsumge1  15739  fsum00  15740  ovolicc2lem4  25359  fsumharmonic  26848  chtwordi  26992  chpwordi  26993  chtlepsi  27043  chtublem  27048  perfectlem2  27067  chtppilimlem1  27310  vmadivsumb  27320  rplogsumlem2  27322  rpvmasumlem  27324  dchrvmasumiflem1  27338  rplogsum  27364  dirith2  27365  mulog2sumlem2  27372  selbergb  27386  selberg2b  27389  chpdifbndlem1  27390  logdivbnd  27393  selberg3lem2  27395  pntrsumbnd  27403  pntlemf  27442  fsumiunle  32459  esumpcvgval  33531  eulerpartlemgc  33816  reprinfz1  34089  hgt750lemb  34123  fsumlessf  44744  sge0fsum  45554  sge0xaddlem1  45600  sge0seq  45613  carageniuncllem2  45689  perfectALTVlem2  46841
  Copyright terms: Public domain W3C validator