|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xralrple4 | Structured version Visualization version GIF version | ||
| Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.) | 
| Ref | Expression | 
|---|---|
| xralrple4.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) | 
| xralrple4.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| xralrple4.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| Ref | Expression | 
|---|---|
| xralrple4 | ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥↑𝑁)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xralrple4.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | 1 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*) | 
| 3 | xralrple4.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 3 | rexrd 11312 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | 
| 5 | 4 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*) | 
| 6 | 3 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ) | 
| 7 | rpre 13044 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
| 8 | 7 | adantl 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ) | 
| 9 | xralrple4.n | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 10 | 9 | nnnn0d 12589 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | 
| 11 | 10 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑁 ∈ ℕ0) | 
| 12 | 8, 11 | reexpcld 14204 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥↑𝑁) ∈ ℝ) | 
| 13 | 12 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑥 ∈ ℝ+) → (𝑥↑𝑁) ∈ ℝ) | 
| 14 | 6, 13 | readdcld 11291 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥↑𝑁)) ∈ ℝ) | 
| 15 | 14 | rexrd 11312 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥↑𝑁)) ∈ ℝ*) | 
| 16 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ 𝐵) | |
| 17 | rpge0 13049 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → 0 ≤ 𝑥) | |
| 18 | 17 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 ≤ 𝑥) | 
| 19 | 8, 11, 18 | expge0d 14205 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 ≤ (𝑥↑𝑁)) | 
| 20 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ) | 
| 21 | 20, 12 | addge01d 11852 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (0 ≤ (𝑥↑𝑁) ↔ 𝐵 ≤ (𝐵 + (𝑥↑𝑁)))) | 
| 22 | 19, 21 | mpbid 232 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + (𝑥↑𝑁))) | 
| 23 | 22 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + (𝑥↑𝑁))) | 
| 24 | 2, 5, 15, 16, 23 | xrletrd 13205 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + (𝑥↑𝑁))) | 
| 25 | 24 | ralrimiva 3145 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥↑𝑁))) | 
| 26 | 25 | ex 412 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥↑𝑁)))) | 
| 27 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+) | |
| 28 | 9 | nnrpd 13076 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℝ+) | 
| 29 | 28 | rpreccld 13088 | . . . . . . . . . . 11 ⊢ (𝜑 → (1 / 𝑁) ∈ ℝ+) | 
| 30 | 29 | rpred 13078 | . . . . . . . . . 10 ⊢ (𝜑 → (1 / 𝑁) ∈ ℝ) | 
| 31 | 30 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (1 / 𝑁) ∈ ℝ) | 
| 32 | 27, 31 | rpcxpcld 26776 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (𝑦↑𝑐(1 / 𝑁)) ∈ ℝ+) | 
| 33 | 32 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥↑𝑁))) ∧ 𝑦 ∈ ℝ+) → (𝑦↑𝑐(1 / 𝑁)) ∈ ℝ+) | 
| 34 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥↑𝑁))) ∧ 𝑦 ∈ ℝ+) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥↑𝑁))) | |
| 35 | oveq1 7439 | . . . . . . . . . 10 ⊢ (𝑥 = (𝑦↑𝑐(1 / 𝑁)) → (𝑥↑𝑁) = ((𝑦↑𝑐(1 / 𝑁))↑𝑁)) | |
| 36 | 35 | oveq2d 7448 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦↑𝑐(1 / 𝑁)) → (𝐵 + (𝑥↑𝑁)) = (𝐵 + ((𝑦↑𝑐(1 / 𝑁))↑𝑁))) | 
| 37 | 36 | breq2d 5154 | . . . . . . . 8 ⊢ (𝑥 = (𝑦↑𝑐(1 / 𝑁)) → (𝐴 ≤ (𝐵 + (𝑥↑𝑁)) ↔ 𝐴 ≤ (𝐵 + ((𝑦↑𝑐(1 / 𝑁))↑𝑁)))) | 
| 38 | 37 | rspcva 3619 | . . . . . . 7 ⊢ (((𝑦↑𝑐(1 / 𝑁)) ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥↑𝑁))) → 𝐴 ≤ (𝐵 + ((𝑦↑𝑐(1 / 𝑁))↑𝑁))) | 
| 39 | 33, 34, 38 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥↑𝑁))) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + ((𝑦↑𝑐(1 / 𝑁))↑𝑁))) | 
| 40 | 27 | rpcnd 13080 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ) | 
| 41 | 9 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑁 ∈ ℕ) | 
| 42 | cxproot 26733 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝑦↑𝑐(1 / 𝑁))↑𝑁) = 𝑦) | |
| 43 | 40, 41, 42 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ((𝑦↑𝑐(1 / 𝑁))↑𝑁) = 𝑦) | 
| 44 | 43 | oveq2d 7448 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (𝐵 + ((𝑦↑𝑐(1 / 𝑁))↑𝑁)) = (𝐵 + 𝑦)) | 
| 45 | 44 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥↑𝑁))) ∧ 𝑦 ∈ ℝ+) → (𝐵 + ((𝑦↑𝑐(1 / 𝑁))↑𝑁)) = (𝐵 + 𝑦)) | 
| 46 | 39, 45 | breqtrd 5168 | . . . . 5 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥↑𝑁))) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑦)) | 
| 47 | 46 | ralrimiva 3145 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥↑𝑁))) → ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)) | 
| 48 | xralrple 13248 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦))) | |
| 49 | 1, 3, 48 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦))) | 
| 50 | 49 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥↑𝑁))) → (𝐴 ≤ 𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦))) | 
| 51 | 47, 50 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥↑𝑁))) → 𝐴 ≤ 𝐵) | 
| 52 | 51 | ex 412 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥↑𝑁)) → 𝐴 ≤ 𝐵)) | 
| 53 | 26, 52 | impbid 212 | 1 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥↑𝑁)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 class class class wbr 5142 (class class class)co 7432 ℂcc 11154 ℝcr 11155 0cc0 11156 1c1 11157 + caddc 11159 ℝ*cxr 11295 ≤ cle 11297 / cdiv 11921 ℕcn 12267 ℕ0cn0 12528 ℝ+crp 13035 ↑cexp 14103 ↑𝑐ccxp 26598 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 ax-addf 11235 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-fi 9452 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-q 12992 df-rp 13036 df-xneg 13155 df-xadd 13156 df-xmul 13157 df-ioo 13392 df-ioc 13393 df-ico 13394 df-icc 13395 df-fz 13549 df-fzo 13696 df-fl 13833 df-mod 13911 df-seq 14044 df-exp 14104 df-fac 14314 df-bc 14343 df-hash 14371 df-shft 15107 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-limsup 15508 df-clim 15525 df-rlim 15526 df-sum 15724 df-ef 16104 df-sin 16106 df-cos 16107 df-pi 16109 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-mulg 19087 df-cntz 19336 df-cmn 19801 df-psmet 21357 df-xmet 21358 df-met 21359 df-bl 21360 df-mopn 21361 df-fbas 21362 df-fg 21363 df-cnfld 21366 df-top 22901 df-topon 22918 df-topsp 22940 df-bases 22954 df-cld 23028 df-ntr 23029 df-cls 23030 df-nei 23107 df-lp 23145 df-perf 23146 df-cn 23236 df-cnp 23237 df-haus 23324 df-tx 23571 df-hmeo 23764 df-fil 23855 df-fm 23947 df-flim 23948 df-flf 23949 df-xms 24331 df-ms 24332 df-tms 24333 df-cncf 24905 df-limc 25902 df-dv 25903 df-log 26599 df-cxp 26600 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |