Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xralrple4 Structured version   Visualization version   GIF version

Theorem xralrple4 45369
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
xralrple4.a (𝜑𝐴 ∈ ℝ*)
xralrple4.b (𝜑𝐵 ∈ ℝ)
xralrple4.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
xralrple4 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥𝑁))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁   𝜑,𝑥

Proof of Theorem xralrple4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xralrple4.a . . . . . 6 (𝜑𝐴 ∈ ℝ*)
21ad2antrr 726 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ*)
3 xralrple4.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43rexrd 11224 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
54ad2antrr 726 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ*)
63ad2antrr 726 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
7 rpre 12960 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
87adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
9 xralrple4.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
109nnnn0d 12503 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
1110adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ ℕ0)
128, 11reexpcld 14128 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑁) ∈ ℝ)
1312adantlr 715 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝑥𝑁) ∈ ℝ)
146, 13readdcld 11203 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥𝑁)) ∈ ℝ)
1514rexrd 11224 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥𝑁)) ∈ ℝ*)
16 simplr 768 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴𝐵)
17 rpge0 12965 . . . . . . . . 9 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
1817adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝑥)
198, 11, 18expge0d 14129 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ (𝑥𝑁))
203adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
2120, 12addge01d 11766 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (0 ≤ (𝑥𝑁) ↔ 𝐵 ≤ (𝐵 + (𝑥𝑁))))
2219, 21mpbid 232 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + (𝑥𝑁)))
2322adantlr 715 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≤ (𝐵 + (𝑥𝑁)))
242, 5, 15, 16, 23xrletrd 13122 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + (𝑥𝑁)))
2524ralrimiva 3125 . . 3 ((𝜑𝐴𝐵) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥𝑁)))
2625ex 412 . 2 (𝜑 → (𝐴𝐵 → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥𝑁))))
27 simpr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
289nnrpd 12993 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℝ+)
2928rpreccld 13005 . . . . . . . . . . 11 (𝜑 → (1 / 𝑁) ∈ ℝ+)
3029rpred 12995 . . . . . . . . . 10 (𝜑 → (1 / 𝑁) ∈ ℝ)
3130adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → (1 / 𝑁) ∈ ℝ)
3227, 31rpcxpcld 26642 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → (𝑦𝑐(1 / 𝑁)) ∈ ℝ+)
3332adantlr 715 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥𝑁))) ∧ 𝑦 ∈ ℝ+) → (𝑦𝑐(1 / 𝑁)) ∈ ℝ+)
34 simplr 768 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥𝑁))) ∧ 𝑦 ∈ ℝ+) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥𝑁)))
35 oveq1 7394 . . . . . . . . . 10 (𝑥 = (𝑦𝑐(1 / 𝑁)) → (𝑥𝑁) = ((𝑦𝑐(1 / 𝑁))↑𝑁))
3635oveq2d 7403 . . . . . . . . 9 (𝑥 = (𝑦𝑐(1 / 𝑁)) → (𝐵 + (𝑥𝑁)) = (𝐵 + ((𝑦𝑐(1 / 𝑁))↑𝑁)))
3736breq2d 5119 . . . . . . . 8 (𝑥 = (𝑦𝑐(1 / 𝑁)) → (𝐴 ≤ (𝐵 + (𝑥𝑁)) ↔ 𝐴 ≤ (𝐵 + ((𝑦𝑐(1 / 𝑁))↑𝑁))))
3837rspcva 3586 . . . . . . 7 (((𝑦𝑐(1 / 𝑁)) ∈ ℝ+ ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥𝑁))) → 𝐴 ≤ (𝐵 + ((𝑦𝑐(1 / 𝑁))↑𝑁)))
3933, 34, 38syl2anc 584 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥𝑁))) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + ((𝑦𝑐(1 / 𝑁))↑𝑁)))
4027rpcnd 12997 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
419adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ+) → 𝑁 ∈ ℕ)
42 cxproot 26599 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝑦𝑐(1 / 𝑁))↑𝑁) = 𝑦)
4340, 41, 42syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ+) → ((𝑦𝑐(1 / 𝑁))↑𝑁) = 𝑦)
4443oveq2d 7403 . . . . . . 7 ((𝜑𝑦 ∈ ℝ+) → (𝐵 + ((𝑦𝑐(1 / 𝑁))↑𝑁)) = (𝐵 + 𝑦))
4544adantlr 715 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥𝑁))) ∧ 𝑦 ∈ ℝ+) → (𝐵 + ((𝑦𝑐(1 / 𝑁))↑𝑁)) = (𝐵 + 𝑦))
4639, 45breqtrd 5133 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥𝑁))) ∧ 𝑦 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑦))
4746ralrimiva 3125 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥𝑁))) → ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦))
48 xralrple 13165 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
491, 3, 48syl2anc 584 . . . . 5 (𝜑 → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
5049adantr 480 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥𝑁))) → (𝐴𝐵 ↔ ∀𝑦 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑦)))
5147, 50mpbird 257 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥𝑁))) → 𝐴𝐵)
5251ex 412 . 2 (𝜑 → (∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥𝑁)) → 𝐴𝐵))
5326, 52impbid 212 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + (𝑥𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  *cxr 11207  cle 11209   / cdiv 11835  cn 12186  0cn0 12442  +crp 12951  cexp 14026  𝑐ccxp 26464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator