| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem19 | Structured version Visualization version GIF version | ||
| Description: Dividing implies inequality for lcm inequality lemma. (Contributed by metakunt, 12-May-2024.) |
| Ref | Expression |
|---|---|
| lcmineqlem19.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| lcmineqlem19 | ⊢ (𝜑 → ((𝑁 · ((2 · 𝑁) + 1)) · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...((2 · 𝑁) + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmineqlem19.1 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | 2nn 12259 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ∈ ℕ) |
| 4 | 3, 1 | nnmulcld 12239 | . . 3 ⊢ (𝜑 → (2 · 𝑁) ∈ ℕ) |
| 5 | 4 | peano2nnd 12203 | . 2 ⊢ (𝜑 → ((2 · 𝑁) + 1) ∈ ℕ) |
| 6 | 1 | nnnn0d 12503 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 7 | 1 | nnred 12201 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 8 | 2re 12260 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ∈ ℝ) |
| 10 | 6 | nn0ge0d 12506 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝑁) |
| 11 | 3 | nnge1d 12234 | . . . 4 ⊢ (𝜑 → 1 ≤ 2) |
| 12 | 7, 9, 10, 11 | lemulge12d 12121 | . . 3 ⊢ (𝜑 → 𝑁 ≤ (2 · 𝑁)) |
| 13 | 4, 6, 12 | bccl2d 41979 | . 2 ⊢ (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ) |
| 14 | fz1ssnn 13516 | . . . 4 ⊢ (1...(2 · 𝑁)) ⊆ ℕ | |
| 15 | fzfi 13937 | . . . 4 ⊢ (1...(2 · 𝑁)) ∈ Fin | |
| 16 | lcmfnncl 16599 | . . . 4 ⊢ (((1...(2 · 𝑁)) ⊆ ℕ ∧ (1...(2 · 𝑁)) ∈ Fin) → (lcm‘(1...(2 · 𝑁))) ∈ ℕ) | |
| 17 | 14, 15, 16 | mp2an 692 | . . 3 ⊢ (lcm‘(1...(2 · 𝑁))) ∈ ℕ |
| 18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → (lcm‘(1...(2 · 𝑁))) ∈ ℕ) |
| 19 | fz1ssnn 13516 | . . . 4 ⊢ (1...((2 · 𝑁) + 1)) ⊆ ℕ | |
| 20 | fzfi 13937 | . . . 4 ⊢ (1...((2 · 𝑁) + 1)) ∈ Fin | |
| 21 | lcmfnncl 16599 | . . . 4 ⊢ (((1...((2 · 𝑁) + 1)) ⊆ ℕ ∧ (1...((2 · 𝑁) + 1)) ∈ Fin) → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ) | |
| 22 | 19, 20, 21 | mp2an 692 | . . 3 ⊢ (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ |
| 23 | 22 | a1i 11 | . 2 ⊢ (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ) |
| 24 | 1, 4, 12 | lcmineqlem16 42032 | . 2 ⊢ (𝜑 → (𝑁 · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...(2 · 𝑁)))) |
| 25 | 1 | lcmineqlem18 42034 | . . 3 ⊢ (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁))) |
| 26 | 1 | peano2nnd 12203 | . . . 4 ⊢ (𝜑 → (𝑁 + 1) ∈ ℕ) |
| 27 | 9, 7 | remulcld 11204 | . . . . 5 ⊢ (𝜑 → (2 · 𝑁) ∈ ℝ) |
| 28 | 1red 11175 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 29 | 7, 27, 28, 12 | leadd1dd 11792 | . . . 4 ⊢ (𝜑 → (𝑁 + 1) ≤ ((2 · 𝑁) + 1)) |
| 30 | 26, 5, 29 | lcmineqlem16 42032 | . . 3 ⊢ (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) ∥ (lcm‘(1...((2 · 𝑁) + 1)))) |
| 31 | 25, 30 | eqbrtrrd 5131 | . 2 ⊢ (𝜑 → (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...((2 · 𝑁) + 1)))) |
| 32 | 18 | nnzd 12556 | . . . . . 6 ⊢ (𝜑 → (lcm‘(1...(2 · 𝑁))) ∈ ℤ) |
| 33 | 5 | nnzd 12556 | . . . . . 6 ⊢ (𝜑 → ((2 · 𝑁) + 1) ∈ ℤ) |
| 34 | 32, 33 | jca 511 | . . . . 5 ⊢ (𝜑 → ((lcm‘(1...(2 · 𝑁))) ∈ ℤ ∧ ((2 · 𝑁) + 1) ∈ ℤ)) |
| 35 | dvdslcm 16568 | . . . . 5 ⊢ (((lcm‘(1...(2 · 𝑁))) ∈ ℤ ∧ ((2 · 𝑁) + 1) ∈ ℤ) → ((lcm‘(1...(2 · 𝑁))) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)) ∧ ((2 · 𝑁) + 1) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)))) | |
| 36 | 34, 35 | syl 17 | . . . 4 ⊢ (𝜑 → ((lcm‘(1...(2 · 𝑁))) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)) ∧ ((2 · 𝑁) + 1) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)))) |
| 37 | 36 | simpld 494 | . . 3 ⊢ (𝜑 → (lcm‘(1...(2 · 𝑁))) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1))) |
| 38 | 5 | lcmfunnnd 42000 | . . . 4 ⊢ (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) = ((lcm‘(1...(((2 · 𝑁) + 1) − 1))) lcm ((2 · 𝑁) + 1))) |
| 39 | 27 | recnd 11202 | . . . . . . . 8 ⊢ (𝜑 → (2 · 𝑁) ∈ ℂ) |
| 40 | 1cnd 11169 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 41 | 39, 40 | pncand 11534 | . . . . . . 7 ⊢ (𝜑 → (((2 · 𝑁) + 1) − 1) = (2 · 𝑁)) |
| 42 | 41 | oveq2d 7403 | . . . . . 6 ⊢ (𝜑 → (1...(((2 · 𝑁) + 1) − 1)) = (1...(2 · 𝑁))) |
| 43 | 42 | fveq2d 6862 | . . . . 5 ⊢ (𝜑 → (lcm‘(1...(((2 · 𝑁) + 1) − 1))) = (lcm‘(1...(2 · 𝑁)))) |
| 44 | 43 | oveq1d 7402 | . . . 4 ⊢ (𝜑 → ((lcm‘(1...(((2 · 𝑁) + 1) − 1))) lcm ((2 · 𝑁) + 1)) = ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1))) |
| 45 | 38, 44 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) = ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1))) |
| 46 | 37, 45 | breqtrrd 5135 | . 2 ⊢ (𝜑 → (lcm‘(1...(2 · 𝑁))) ∥ (lcm‘(1...((2 · 𝑁) + 1)))) |
| 47 | 1 | nnzd 12556 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 48 | 2z 12565 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 49 | 1z 12563 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 50 | gcdaddm 16495 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 gcd 1) = (𝑁 gcd (1 + (2 · 𝑁)))) | |
| 51 | 48, 49, 50 | mp3an13 1454 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 1) = (𝑁 gcd (1 + (2 · 𝑁)))) |
| 52 | 47, 51 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑁 gcd 1) = (𝑁 gcd (1 + (2 · 𝑁)))) |
| 53 | 40, 39 | addcomd 11376 | . . . . 5 ⊢ (𝜑 → (1 + (2 · 𝑁)) = ((2 · 𝑁) + 1)) |
| 54 | 53 | oveq2d 7403 | . . . 4 ⊢ (𝜑 → (𝑁 gcd (1 + (2 · 𝑁))) = (𝑁 gcd ((2 · 𝑁) + 1))) |
| 55 | 52, 54 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (𝑁 gcd 1) = (𝑁 gcd ((2 · 𝑁) + 1))) |
| 56 | gcd1 16498 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 1) = 1) | |
| 57 | 47, 56 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁 gcd 1) = 1) |
| 58 | 55, 57 | eqtr3d 2766 | . 2 ⊢ (𝜑 → (𝑁 gcd ((2 · 𝑁) + 1)) = 1) |
| 59 | 1, 5, 13, 18, 23, 24, 31, 46, 58 | lcmineqlem14 42030 | 1 ⊢ (𝜑 → ((𝑁 · ((2 · 𝑁) + 1)) · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...((2 · 𝑁) + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ℝcr 11067 1c1 11069 + caddc 11071 · cmul 11073 − cmin 11405 ℕcn 12186 2c2 12241 ℤcz 12529 ...cfz 13468 Ccbc 14267 ∥ cdvds 16222 gcd cgcd 16464 lcm clcm 16558 lcmclcmf 16559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-symdif 4216 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-prod 15870 df-dvds 16223 df-gcd 16465 df-lcm 16560 df-lcmf 16561 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-cmp 23274 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cncf 24771 df-ovol 25365 df-vol 25366 df-mbf 25520 df-itg1 25521 df-itg2 25522 df-ibl 25523 df-itg 25524 df-0p 25571 df-limc 25767 df-dv 25768 |
| This theorem is referenced by: lcmineqlem20 42036 |
| Copyright terms: Public domain | W3C validator |