Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem19 Structured version   Visualization version   GIF version

Theorem lcmineqlem19 40309
Description: Dividing implies inequality for lcm inequality lemma. (Contributed by metakunt, 12-May-2024.)
Hypothesis
Ref Expression
lcmineqlem19.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
lcmineqlem19 (𝜑 → ((𝑁 · ((2 · 𝑁) + 1)) · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...((2 · 𝑁) + 1))))

Proof of Theorem lcmineqlem19
StepHypRef Expression
1 lcmineqlem19.1 . 2 (𝜑𝑁 ∈ ℕ)
2 2nn 12147 . . . . 5 2 ∈ ℕ
32a1i 11 . . . 4 (𝜑 → 2 ∈ ℕ)
43, 1nnmulcld 12127 . . 3 (𝜑 → (2 · 𝑁) ∈ ℕ)
54peano2nnd 12091 . 2 (𝜑 → ((2 · 𝑁) + 1) ∈ ℕ)
61nnnn0d 12394 . . 3 (𝜑𝑁 ∈ ℕ0)
71nnred 12089 . . . 4 (𝜑𝑁 ∈ ℝ)
8 2re 12148 . . . . 5 2 ∈ ℝ
98a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
106nn0ge0d 12397 . . . 4 (𝜑 → 0 ≤ 𝑁)
113nnge1d 12122 . . . 4 (𝜑 → 1 ≤ 2)
127, 9, 10, 11lemulge12d 12014 . . 3 (𝜑𝑁 ≤ (2 · 𝑁))
134, 6, 12bccl2d 40254 . 2 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ)
14 fz1ssnn 13388 . . . 4 (1...(2 · 𝑁)) ⊆ ℕ
15 fzfi 13793 . . . 4 (1...(2 · 𝑁)) ∈ Fin
16 lcmfnncl 16431 . . . 4 (((1...(2 · 𝑁)) ⊆ ℕ ∧ (1...(2 · 𝑁)) ∈ Fin) → (lcm‘(1...(2 · 𝑁))) ∈ ℕ)
1714, 15, 16mp2an 689 . . 3 (lcm‘(1...(2 · 𝑁))) ∈ ℕ
1817a1i 11 . 2 (𝜑 → (lcm‘(1...(2 · 𝑁))) ∈ ℕ)
19 fz1ssnn 13388 . . . 4 (1...((2 · 𝑁) + 1)) ⊆ ℕ
20 fzfi 13793 . . . 4 (1...((2 · 𝑁) + 1)) ∈ Fin
21 lcmfnncl 16431 . . . 4 (((1...((2 · 𝑁) + 1)) ⊆ ℕ ∧ (1...((2 · 𝑁) + 1)) ∈ Fin) → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ)
2219, 20, 21mp2an 689 . . 3 (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ
2322a1i 11 . 2 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ)
241, 4, 12lcmineqlem16 40306 . 2 (𝜑 → (𝑁 · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...(2 · 𝑁))))
251lcmineqlem18 40308 . . 3 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
261peano2nnd 12091 . . . 4 (𝜑 → (𝑁 + 1) ∈ ℕ)
279, 7remulcld 11106 . . . . 5 (𝜑 → (2 · 𝑁) ∈ ℝ)
28 1red 11077 . . . . 5 (𝜑 → 1 ∈ ℝ)
297, 27, 28, 12leadd1dd 11690 . . . 4 (𝜑 → (𝑁 + 1) ≤ ((2 · 𝑁) + 1))
3026, 5, 29lcmineqlem16 40306 . . 3 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) ∥ (lcm‘(1...((2 · 𝑁) + 1))))
3125, 30eqbrtrrd 5116 . 2 (𝜑 → (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...((2 · 𝑁) + 1))))
3218nnzd 12526 . . . . . 6 (𝜑 → (lcm‘(1...(2 · 𝑁))) ∈ ℤ)
335nnzd 12526 . . . . . 6 (𝜑 → ((2 · 𝑁) + 1) ∈ ℤ)
3432, 33jca 512 . . . . 5 (𝜑 → ((lcm‘(1...(2 · 𝑁))) ∈ ℤ ∧ ((2 · 𝑁) + 1) ∈ ℤ))
35 dvdslcm 16400 . . . . 5 (((lcm‘(1...(2 · 𝑁))) ∈ ℤ ∧ ((2 · 𝑁) + 1) ∈ ℤ) → ((lcm‘(1...(2 · 𝑁))) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)) ∧ ((2 · 𝑁) + 1) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1))))
3634, 35syl 17 . . . 4 (𝜑 → ((lcm‘(1...(2 · 𝑁))) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)) ∧ ((2 · 𝑁) + 1) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1))))
3736simpld 495 . . 3 (𝜑 → (lcm‘(1...(2 · 𝑁))) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)))
385lcmfunnnd 40274 . . . 4 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) = ((lcm‘(1...(((2 · 𝑁) + 1) − 1))) lcm ((2 · 𝑁) + 1)))
3927recnd 11104 . . . . . . . 8 (𝜑 → (2 · 𝑁) ∈ ℂ)
40 1cnd 11071 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
4139, 40pncand 11434 . . . . . . 7 (𝜑 → (((2 · 𝑁) + 1) − 1) = (2 · 𝑁))
4241oveq2d 7353 . . . . . 6 (𝜑 → (1...(((2 · 𝑁) + 1) − 1)) = (1...(2 · 𝑁)))
4342fveq2d 6829 . . . . 5 (𝜑 → (lcm‘(1...(((2 · 𝑁) + 1) − 1))) = (lcm‘(1...(2 · 𝑁))))
4443oveq1d 7352 . . . 4 (𝜑 → ((lcm‘(1...(((2 · 𝑁) + 1) − 1))) lcm ((2 · 𝑁) + 1)) = ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)))
4538, 44eqtrd 2776 . . 3 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) = ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)))
4637, 45breqtrrd 5120 . 2 (𝜑 → (lcm‘(1...(2 · 𝑁))) ∥ (lcm‘(1...((2 · 𝑁) + 1))))
471nnzd 12526 . . . . 5 (𝜑𝑁 ∈ ℤ)
48 2z 12453 . . . . . 6 2 ∈ ℤ
49 1z 12451 . . . . . 6 1 ∈ ℤ
50 gcdaddm 16331 . . . . . 6 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 gcd 1) = (𝑁 gcd (1 + (2 · 𝑁))))
5148, 49, 50mp3an13 1451 . . . . 5 (𝑁 ∈ ℤ → (𝑁 gcd 1) = (𝑁 gcd (1 + (2 · 𝑁))))
5247, 51syl 17 . . . 4 (𝜑 → (𝑁 gcd 1) = (𝑁 gcd (1 + (2 · 𝑁))))
5340, 39addcomd 11278 . . . . 5 (𝜑 → (1 + (2 · 𝑁)) = ((2 · 𝑁) + 1))
5453oveq2d 7353 . . . 4 (𝜑 → (𝑁 gcd (1 + (2 · 𝑁))) = (𝑁 gcd ((2 · 𝑁) + 1)))
5552, 54eqtrd 2776 . . 3 (𝜑 → (𝑁 gcd 1) = (𝑁 gcd ((2 · 𝑁) + 1)))
56 gcd1 16334 . . . 4 (𝑁 ∈ ℤ → (𝑁 gcd 1) = 1)
5747, 56syl 17 . . 3 (𝜑 → (𝑁 gcd 1) = 1)
5855, 57eqtr3d 2778 . 2 (𝜑 → (𝑁 gcd ((2 · 𝑁) + 1)) = 1)
591, 5, 13, 18, 23, 24, 31, 46, 58lcmineqlem14 40304 1 (𝜑 → ((𝑁 · ((2 · 𝑁) + 1)) · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...((2 · 𝑁) + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wss 3898   class class class wbr 5092  cfv 6479  (class class class)co 7337  Fincfn 8804  cr 10971  1c1 10973   + caddc 10975   · cmul 10977  cmin 11306  cn 12074  2c2 12129  cz 12420  ...cfz 13340  Ccbc 14117  cdvds 16062   gcd cgcd 16300   lcm clcm 16390  lcmclcmf 16391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cc 10292  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050  ax-addf 11051  ax-mulf 11052
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-symdif 4189  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-iin 4944  df-disj 5058  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-ofr 7596  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-oadd 8371  df-omul 8372  df-er 8569  df-map 8688  df-pm 8689  df-ixp 8757  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-fi 9268  df-sup 9299  df-inf 9300  df-oi 9367  df-dju 9758  df-card 9796  df-acn 9799  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-dec 12539  df-uz 12684  df-q 12790  df-rp 12832  df-xneg 12949  df-xadd 12950  df-xmul 12951  df-ioo 13184  df-ioc 13185  df-ico 13186  df-icc 13187  df-fz 13341  df-fzo 13484  df-fl 13613  df-mod 13691  df-seq 13823  df-exp 13884  df-fac 14089  df-bc 14118  df-hash 14146  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-limsup 15279  df-clim 15296  df-rlim 15297  df-sum 15497  df-prod 15715  df-dvds 16063  df-gcd 16301  df-lcm 16392  df-lcmf 16393  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-hom 17083  df-cco 17084  df-rest 17230  df-topn 17231  df-0g 17249  df-gsum 17250  df-topgen 17251  df-pt 17252  df-prds 17255  df-xrs 17310  df-qtop 17315  df-imas 17316  df-xps 17318  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-submnd 18528  df-mulg 18797  df-cntz 19019  df-cmn 19483  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-fbas 20700  df-fg 20701  df-cnfld 20704  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-cld 22276  df-ntr 22277  df-cls 22278  df-nei 22355  df-lp 22393  df-perf 22394  df-cn 22484  df-cnp 22485  df-haus 22572  df-cmp 22644  df-tx 22819  df-hmeo 23012  df-fil 23103  df-fm 23195  df-flim 23196  df-flf 23197  df-xms 23579  df-ms 23580  df-tms 23581  df-cncf 24147  df-ovol 24734  df-vol 24735  df-mbf 24889  df-itg1 24890  df-itg2 24891  df-ibl 24892  df-itg 24893  df-0p 24940  df-limc 25136  df-dv 25137
This theorem is referenced by:  lcmineqlem20  40310
  Copyright terms: Public domain W3C validator