![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem19 | Structured version Visualization version GIF version |
Description: Dividing implies inequality for lcm inequality lemma. (Contributed by metakunt, 12-May-2024.) |
Ref | Expression |
---|---|
lcmineqlem19.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
lcmineqlem19 | ⊢ (𝜑 → ((𝑁 · ((2 · 𝑁) + 1)) · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...((2 · 𝑁) + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmineqlem19.1 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
2 | 2nn 12366 | . . . . 5 ⊢ 2 ∈ ℕ | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ∈ ℕ) |
4 | 3, 1 | nnmulcld 12346 | . . 3 ⊢ (𝜑 → (2 · 𝑁) ∈ ℕ) |
5 | 4 | peano2nnd 12310 | . 2 ⊢ (𝜑 → ((2 · 𝑁) + 1) ∈ ℕ) |
6 | 1 | nnnn0d 12613 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
7 | 1 | nnred 12308 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
8 | 2re 12367 | . . . . 5 ⊢ 2 ∈ ℝ | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ∈ ℝ) |
10 | 6 | nn0ge0d 12616 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝑁) |
11 | 3 | nnge1d 12341 | . . . 4 ⊢ (𝜑 → 1 ≤ 2) |
12 | 7, 9, 10, 11 | lemulge12d 12233 | . . 3 ⊢ (𝜑 → 𝑁 ≤ (2 · 𝑁)) |
13 | 4, 6, 12 | bccl2d 41948 | . 2 ⊢ (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ) |
14 | fz1ssnn 13615 | . . . 4 ⊢ (1...(2 · 𝑁)) ⊆ ℕ | |
15 | fzfi 14023 | . . . 4 ⊢ (1...(2 · 𝑁)) ∈ Fin | |
16 | lcmfnncl 16676 | . . . 4 ⊢ (((1...(2 · 𝑁)) ⊆ ℕ ∧ (1...(2 · 𝑁)) ∈ Fin) → (lcm‘(1...(2 · 𝑁))) ∈ ℕ) | |
17 | 14, 15, 16 | mp2an 691 | . . 3 ⊢ (lcm‘(1...(2 · 𝑁))) ∈ ℕ |
18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → (lcm‘(1...(2 · 𝑁))) ∈ ℕ) |
19 | fz1ssnn 13615 | . . . 4 ⊢ (1...((2 · 𝑁) + 1)) ⊆ ℕ | |
20 | fzfi 14023 | . . . 4 ⊢ (1...((2 · 𝑁) + 1)) ∈ Fin | |
21 | lcmfnncl 16676 | . . . 4 ⊢ (((1...((2 · 𝑁) + 1)) ⊆ ℕ ∧ (1...((2 · 𝑁) + 1)) ∈ Fin) → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ) | |
22 | 19, 20, 21 | mp2an 691 | . . 3 ⊢ (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ |
23 | 22 | a1i 11 | . 2 ⊢ (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ) |
24 | 1, 4, 12 | lcmineqlem16 42001 | . 2 ⊢ (𝜑 → (𝑁 · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...(2 · 𝑁)))) |
25 | 1 | lcmineqlem18 42003 | . . 3 ⊢ (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁))) |
26 | 1 | peano2nnd 12310 | . . . 4 ⊢ (𝜑 → (𝑁 + 1) ∈ ℕ) |
27 | 9, 7 | remulcld 11320 | . . . . 5 ⊢ (𝜑 → (2 · 𝑁) ∈ ℝ) |
28 | 1red 11291 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
29 | 7, 27, 28, 12 | leadd1dd 11904 | . . . 4 ⊢ (𝜑 → (𝑁 + 1) ≤ ((2 · 𝑁) + 1)) |
30 | 26, 5, 29 | lcmineqlem16 42001 | . . 3 ⊢ (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) ∥ (lcm‘(1...((2 · 𝑁) + 1)))) |
31 | 25, 30 | eqbrtrrd 5190 | . 2 ⊢ (𝜑 → (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...((2 · 𝑁) + 1)))) |
32 | 18 | nnzd 12666 | . . . . . 6 ⊢ (𝜑 → (lcm‘(1...(2 · 𝑁))) ∈ ℤ) |
33 | 5 | nnzd 12666 | . . . . . 6 ⊢ (𝜑 → ((2 · 𝑁) + 1) ∈ ℤ) |
34 | 32, 33 | jca 511 | . . . . 5 ⊢ (𝜑 → ((lcm‘(1...(2 · 𝑁))) ∈ ℤ ∧ ((2 · 𝑁) + 1) ∈ ℤ)) |
35 | dvdslcm 16645 | . . . . 5 ⊢ (((lcm‘(1...(2 · 𝑁))) ∈ ℤ ∧ ((2 · 𝑁) + 1) ∈ ℤ) → ((lcm‘(1...(2 · 𝑁))) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)) ∧ ((2 · 𝑁) + 1) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)))) | |
36 | 34, 35 | syl 17 | . . . 4 ⊢ (𝜑 → ((lcm‘(1...(2 · 𝑁))) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)) ∧ ((2 · 𝑁) + 1) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)))) |
37 | 36 | simpld 494 | . . 3 ⊢ (𝜑 → (lcm‘(1...(2 · 𝑁))) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1))) |
38 | 5 | lcmfunnnd 41969 | . . . 4 ⊢ (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) = ((lcm‘(1...(((2 · 𝑁) + 1) − 1))) lcm ((2 · 𝑁) + 1))) |
39 | 27 | recnd 11318 | . . . . . . . 8 ⊢ (𝜑 → (2 · 𝑁) ∈ ℂ) |
40 | 1cnd 11285 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℂ) | |
41 | 39, 40 | pncand 11648 | . . . . . . 7 ⊢ (𝜑 → (((2 · 𝑁) + 1) − 1) = (2 · 𝑁)) |
42 | 41 | oveq2d 7464 | . . . . . 6 ⊢ (𝜑 → (1...(((2 · 𝑁) + 1) − 1)) = (1...(2 · 𝑁))) |
43 | 42 | fveq2d 6924 | . . . . 5 ⊢ (𝜑 → (lcm‘(1...(((2 · 𝑁) + 1) − 1))) = (lcm‘(1...(2 · 𝑁)))) |
44 | 43 | oveq1d 7463 | . . . 4 ⊢ (𝜑 → ((lcm‘(1...(((2 · 𝑁) + 1) − 1))) lcm ((2 · 𝑁) + 1)) = ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1))) |
45 | 38, 44 | eqtrd 2780 | . . 3 ⊢ (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) = ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1))) |
46 | 37, 45 | breqtrrd 5194 | . 2 ⊢ (𝜑 → (lcm‘(1...(2 · 𝑁))) ∥ (lcm‘(1...((2 · 𝑁) + 1)))) |
47 | 1 | nnzd 12666 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
48 | 2z 12675 | . . . . . 6 ⊢ 2 ∈ ℤ | |
49 | 1z 12673 | . . . . . 6 ⊢ 1 ∈ ℤ | |
50 | gcdaddm 16571 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 gcd 1) = (𝑁 gcd (1 + (2 · 𝑁)))) | |
51 | 48, 49, 50 | mp3an13 1452 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 1) = (𝑁 gcd (1 + (2 · 𝑁)))) |
52 | 47, 51 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑁 gcd 1) = (𝑁 gcd (1 + (2 · 𝑁)))) |
53 | 40, 39 | addcomd 11492 | . . . . 5 ⊢ (𝜑 → (1 + (2 · 𝑁)) = ((2 · 𝑁) + 1)) |
54 | 53 | oveq2d 7464 | . . . 4 ⊢ (𝜑 → (𝑁 gcd (1 + (2 · 𝑁))) = (𝑁 gcd ((2 · 𝑁) + 1))) |
55 | 52, 54 | eqtrd 2780 | . . 3 ⊢ (𝜑 → (𝑁 gcd 1) = (𝑁 gcd ((2 · 𝑁) + 1))) |
56 | gcd1 16574 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 1) = 1) | |
57 | 47, 56 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁 gcd 1) = 1) |
58 | 55, 57 | eqtr3d 2782 | . 2 ⊢ (𝜑 → (𝑁 gcd ((2 · 𝑁) + 1)) = 1) |
59 | 1, 5, 13, 18, 23, 24, 31, 46, 58 | lcmineqlem14 41999 | 1 ⊢ (𝜑 → ((𝑁 · ((2 · 𝑁) + 1)) · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...((2 · 𝑁) + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 ℝcr 11183 1c1 11185 + caddc 11187 · cmul 11189 − cmin 11520 ℕcn 12293 2c2 12348 ℤcz 12639 ...cfz 13567 Ccbc 14351 ∥ cdvds 16302 gcd cgcd 16540 lcm clcm 16635 lcmclcmf 16636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-symdif 4272 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-prod 15952 df-dvds 16303 df-gcd 16541 df-lcm 16637 df-lcmf 16638 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-ovol 25518 df-vol 25519 df-mbf 25673 df-itg1 25674 df-itg2 25675 df-ibl 25676 df-itg 25677 df-0p 25724 df-limc 25921 df-dv 25922 |
This theorem is referenced by: lcmineqlem20 42005 |
Copyright terms: Public domain | W3C validator |