Mathbox for metakunt < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem19 Structured version   Visualization version   GIF version

Theorem lcmineqlem19 39334
 Description: Dividing implies inequality for lcm inequality lemma. (Contributed by metakunt, 12-May-2024.)
Hypothesis
Ref Expression
lcmineqlem19.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
lcmineqlem19 (𝜑 → ((𝑁 · ((2 · 𝑁) + 1)) · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...((2 · 𝑁) + 1))))

Proof of Theorem lcmineqlem19
StepHypRef Expression
1 lcmineqlem19.1 . 2 (𝜑𝑁 ∈ ℕ)
2 2nn 11702 . . . . 5 2 ∈ ℕ
32a1i 11 . . . 4 (𝜑 → 2 ∈ ℕ)
43, 1nnmulcld 11682 . . 3 (𝜑 → (2 · 𝑁) ∈ ℕ)
54peano2nnd 11646 . 2 (𝜑 → ((2 · 𝑁) + 1) ∈ ℕ)
61nnnn0d 11947 . . 3 (𝜑𝑁 ∈ ℕ0)
71nnred 11644 . . . 4 (𝜑𝑁 ∈ ℝ)
8 2re 11703 . . . . 5 2 ∈ ℝ
98a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
106nn0ge0d 11950 . . . 4 (𝜑 → 0 ≤ 𝑁)
113nnge1d 11677 . . . 4 (𝜑 → 1 ≤ 2)
127, 9, 10, 11lemulge12d 11571 . . 3 (𝜑𝑁 ≤ (2 · 𝑁))
134, 6, 12bccl2d 39278 . 2 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ)
14 fz1ssnn 12937 . . . 4 (1...(2 · 𝑁)) ⊆ ℕ
15 fzfi 13339 . . . 4 (1...(2 · 𝑁)) ∈ Fin
16 lcmfnncl 15967 . . . 4 (((1...(2 · 𝑁)) ⊆ ℕ ∧ (1...(2 · 𝑁)) ∈ Fin) → (lcm‘(1...(2 · 𝑁))) ∈ ℕ)
1714, 15, 16mp2an 691 . . 3 (lcm‘(1...(2 · 𝑁))) ∈ ℕ
1817a1i 11 . 2 (𝜑 → (lcm‘(1...(2 · 𝑁))) ∈ ℕ)
19 fz1ssnn 12937 . . . 4 (1...((2 · 𝑁) + 1)) ⊆ ℕ
20 fzfi 13339 . . . 4 (1...((2 · 𝑁) + 1)) ∈ Fin
21 lcmfnncl 15967 . . . 4 (((1...((2 · 𝑁) + 1)) ⊆ ℕ ∧ (1...((2 · 𝑁) + 1)) ∈ Fin) → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ)
2219, 20, 21mp2an 691 . . 3 (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ
2322a1i 11 . 2 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ)
241, 4, 12lcmineqlem16 39331 . 2 (𝜑 → (𝑁 · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...(2 · 𝑁))))
251lcmineqlem18 39333 . . 3 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
261peano2nnd 11646 . . . 4 (𝜑 → (𝑁 + 1) ∈ ℕ)
279, 7remulcld 10664 . . . . 5 (𝜑 → (2 · 𝑁) ∈ ℝ)
28 1red 10635 . . . . 5 (𝜑 → 1 ∈ ℝ)
297, 27, 28, 12leadd1dd 11247 . . . 4 (𝜑 → (𝑁 + 1) ≤ ((2 · 𝑁) + 1))
3026, 5, 29lcmineqlem16 39331 . . 3 (𝜑 → ((𝑁 + 1) · (((2 · 𝑁) + 1)C(𝑁 + 1))) ∥ (lcm‘(1...((2 · 𝑁) + 1))))
3125, 30eqbrtrrd 5057 . 2 (𝜑 → (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...((2 · 𝑁) + 1))))
3218nnzd 12078 . . . . . 6 (𝜑 → (lcm‘(1...(2 · 𝑁))) ∈ ℤ)
335nnzd 12078 . . . . . 6 (𝜑 → ((2 · 𝑁) + 1) ∈ ℤ)
3432, 33jca 515 . . . . 5 (𝜑 → ((lcm‘(1...(2 · 𝑁))) ∈ ℤ ∧ ((2 · 𝑁) + 1) ∈ ℤ))
35 dvdslcm 15936 . . . . 5 (((lcm‘(1...(2 · 𝑁))) ∈ ℤ ∧ ((2 · 𝑁) + 1) ∈ ℤ) → ((lcm‘(1...(2 · 𝑁))) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)) ∧ ((2 · 𝑁) + 1) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1))))
3634, 35syl 17 . . . 4 (𝜑 → ((lcm‘(1...(2 · 𝑁))) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)) ∧ ((2 · 𝑁) + 1) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1))))
3736simpld 498 . . 3 (𝜑 → (lcm‘(1...(2 · 𝑁))) ∥ ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)))
385lcmfunnnd 39299 . . . 4 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) = ((lcm‘(1...(((2 · 𝑁) + 1) − 1))) lcm ((2 · 𝑁) + 1)))
3927recnd 10662 . . . . . . . 8 (𝜑 → (2 · 𝑁) ∈ ℂ)
40 1cnd 10629 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
4139, 40pncand 10991 . . . . . . 7 (𝜑 → (((2 · 𝑁) + 1) − 1) = (2 · 𝑁))
4241oveq2d 7155 . . . . . 6 (𝜑 → (1...(((2 · 𝑁) + 1) − 1)) = (1...(2 · 𝑁)))
4342fveq2d 6653 . . . . 5 (𝜑 → (lcm‘(1...(((2 · 𝑁) + 1) − 1))) = (lcm‘(1...(2 · 𝑁))))
4443oveq1d 7154 . . . 4 (𝜑 → ((lcm‘(1...(((2 · 𝑁) + 1) − 1))) lcm ((2 · 𝑁) + 1)) = ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)))
4538, 44eqtrd 2836 . . 3 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) = ((lcm‘(1...(2 · 𝑁))) lcm ((2 · 𝑁) + 1)))
4637, 45breqtrrd 5061 . 2 (𝜑 → (lcm‘(1...(2 · 𝑁))) ∥ (lcm‘(1...((2 · 𝑁) + 1))))
471nnzd 12078 . . . . 5 (𝜑𝑁 ∈ ℤ)
48 2z 12006 . . . . . 6 2 ∈ ℤ
49 1z 12004 . . . . . 6 1 ∈ ℤ
50 gcdaddm 15867 . . . . . 6 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 gcd 1) = (𝑁 gcd (1 + (2 · 𝑁))))
5148, 49, 50mp3an13 1449 . . . . 5 (𝑁 ∈ ℤ → (𝑁 gcd 1) = (𝑁 gcd (1 + (2 · 𝑁))))
5247, 51syl 17 . . . 4 (𝜑 → (𝑁 gcd 1) = (𝑁 gcd (1 + (2 · 𝑁))))
5340, 39addcomd 10835 . . . . 5 (𝜑 → (1 + (2 · 𝑁)) = ((2 · 𝑁) + 1))
5453oveq2d 7155 . . . 4 (𝜑 → (𝑁 gcd (1 + (2 · 𝑁))) = (𝑁 gcd ((2 · 𝑁) + 1)))
5552, 54eqtrd 2836 . . 3 (𝜑 → (𝑁 gcd 1) = (𝑁 gcd ((2 · 𝑁) + 1)))
56 gcd1 15870 . . . 4 (𝑁 ∈ ℤ → (𝑁 gcd 1) = 1)
5747, 56syl 17 . . 3 (𝜑 → (𝑁 gcd 1) = 1)
5855, 57eqtr3d 2838 . 2 (𝜑 → (𝑁 gcd ((2 · 𝑁) + 1)) = 1)
591, 5, 13, 18, 23, 24, 31, 46, 58lcmineqlem14 39329 1 (𝜑 → ((𝑁 · ((2 · 𝑁) + 1)) · ((2 · 𝑁)C𝑁)) ∥ (lcm‘(1...((2 · 𝑁) + 1))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ⊆ wss 3884   class class class wbr 5033  ‘cfv 6328  (class class class)co 7139  Fincfn 8496  ℝcr 10529  1c1 10531   + caddc 10533   · cmul 10535   − cmin 10863  ℕcn 11629  2c2 11684  ℤcz 11973  ...cfz 12889  Ccbc 13662   ∥ cdvds 15603   gcd cgcd 15837   lcm clcm 15926  lcmclcmf 15927 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cc 9850  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-symdif 4172  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-ofr 7394  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-sum 15039  df-prod 15256  df-dvds 15604  df-gcd 15838  df-lcm 15928  df-lcmf 15929  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-lp 21745  df-perf 21746  df-cn 21836  df-cnp 21837  df-haus 21924  df-cmp 21996  df-tx 22171  df-hmeo 22364  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-xms 22931  df-ms 22932  df-tms 22933  df-cncf 23487  df-ovol 24072  df-vol 24073  df-mbf 24227  df-itg1 24228  df-itg2 24229  df-ibl 24230  df-itg 24231  df-0p 24278  df-limc 24473  df-dv 24474 This theorem is referenced by:  lcmineqlem20  39335
 Copyright terms: Public domain W3C validator