![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ccatdmss | Structured version Visualization version GIF version |
Description: The domain of a concatenated word is a superset of the domain of the first word. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
Ref | Expression |
---|---|
ccatdmss.1 | ⊢ (𝜑 → 𝐴 ∈ Word 𝑆) |
ccatdmss.2 | ⊢ (𝜑 → 𝐵 ∈ Word 𝑆) |
Ref | Expression |
---|---|
ccatdmss | ⊢ (𝜑 → dom 𝐴 ⊆ dom (𝐴 ++ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccatdmss.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Word 𝑆) | |
2 | lencl 14536 | . . . . . 6 ⊢ (𝐴 ∈ Word 𝑆 → (♯‘𝐴) ∈ ℕ0) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
4 | 3 | nn0zd 12630 | . . . 4 ⊢ (𝜑 → (♯‘𝐴) ∈ ℤ) |
5 | ccatdmss.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ Word 𝑆) | |
6 | ccatcl 14577 | . . . . . . 7 ⊢ ((𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆) → (𝐴 ++ 𝐵) ∈ Word 𝑆) | |
7 | 1, 5, 6 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → (𝐴 ++ 𝐵) ∈ Word 𝑆) |
8 | lencl 14536 | . . . . . 6 ⊢ ((𝐴 ++ 𝐵) ∈ Word 𝑆 → (♯‘(𝐴 ++ 𝐵)) ∈ ℕ0) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ ℕ0) |
10 | 9 | nn0zd 12630 | . . . 4 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ ℤ) |
11 | 3 | nn0red 12579 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐴) ∈ ℝ) |
12 | lencl 14536 | . . . . . . 7 ⊢ (𝐵 ∈ Word 𝑆 → (♯‘𝐵) ∈ ℕ0) | |
13 | 5, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
14 | nn0addge1 12564 | . . . . . 6 ⊢ (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℕ0) → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝐵))) | |
15 | 11, 13, 14 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝐵))) |
16 | ccatlen 14578 | . . . . . 6 ⊢ ((𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) | |
17 | 1, 5, 16 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) |
18 | 15, 17 | breqtrrd 5173 | . . . 4 ⊢ (𝜑 → (♯‘𝐴) ≤ (♯‘(𝐴 ++ 𝐵))) |
19 | eluz2 12874 | . . . 4 ⊢ ((♯‘(𝐴 ++ 𝐵)) ∈ (ℤ≥‘(♯‘𝐴)) ↔ ((♯‘𝐴) ∈ ℤ ∧ (♯‘(𝐴 ++ 𝐵)) ∈ ℤ ∧ (♯‘𝐴) ≤ (♯‘(𝐴 ++ 𝐵)))) | |
20 | 4, 10, 18, 19 | syl3anbrc 1340 | . . 3 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ (ℤ≥‘(♯‘𝐴))) |
21 | fzoss2 13708 | . . 3 ⊢ ((♯‘(𝐴 ++ 𝐵)) ∈ (ℤ≥‘(♯‘𝐴)) → (0..^(♯‘𝐴)) ⊆ (0..^(♯‘(𝐴 ++ 𝐵)))) | |
22 | 20, 21 | syl 17 | . 2 ⊢ (𝜑 → (0..^(♯‘𝐴)) ⊆ (0..^(♯‘(𝐴 ++ 𝐵)))) |
23 | eqidd 2727 | . . . 4 ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐴)) | |
24 | 23, 1 | wrdfd 32800 | . . 3 ⊢ (𝜑 → 𝐴:(0..^(♯‘𝐴))⟶𝑆) |
25 | 24 | fdmd 6730 | . 2 ⊢ (𝜑 → dom 𝐴 = (0..^(♯‘𝐴))) |
26 | eqidd 2727 | . . . 4 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) = (♯‘(𝐴 ++ 𝐵))) | |
27 | 26, 7 | wrdfd 32800 | . . 3 ⊢ (𝜑 → (𝐴 ++ 𝐵):(0..^(♯‘(𝐴 ++ 𝐵)))⟶𝑆) |
28 | 27 | fdmd 6730 | . 2 ⊢ (𝜑 → dom (𝐴 ++ 𝐵) = (0..^(♯‘(𝐴 ++ 𝐵)))) |
29 | 22, 25, 28 | 3sstr4d 4026 | 1 ⊢ (𝜑 → dom 𝐴 ⊆ dom (𝐴 ++ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3946 class class class wbr 5145 dom cdm 5674 ‘cfv 6546 (class class class)co 7416 ℝcr 11148 0cc0 11149 + caddc 11152 ≤ cle 11290 ℕ0cn0 12518 ℤcz 12604 ℤ≥cuz 12868 ..^cfzo 13675 ♯chash 14342 Word cword 14517 ++ cconcat 14573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-card 9975 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-n0 12519 df-z 12605 df-uz 12869 df-fz 13533 df-fzo 13676 df-hash 14343 df-word 14518 df-concat 14574 |
This theorem is referenced by: chnind 32883 |
Copyright terms: Public domain | W3C validator |