| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ccatdmss | Structured version Visualization version GIF version | ||
| Description: The domain of a concatenated word is a superset of the domain of the first word. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| ccatdmss.1 | ⊢ (𝜑 → 𝐴 ∈ Word 𝑆) |
| ccatdmss.2 | ⊢ (𝜑 → 𝐵 ∈ Word 𝑆) |
| Ref | Expression |
|---|---|
| ccatdmss | ⊢ (𝜑 → dom 𝐴 ⊆ dom (𝐴 ++ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatdmss.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Word 𝑆) | |
| 2 | lencl 14505 | . . . . . 6 ⊢ (𝐴 ∈ Word 𝑆 → (♯‘𝐴) ∈ ℕ0) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
| 4 | 3 | nn0zd 12562 | . . . 4 ⊢ (𝜑 → (♯‘𝐴) ∈ ℤ) |
| 5 | ccatdmss.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ Word 𝑆) | |
| 6 | ccatcl 14546 | . . . . . . 7 ⊢ ((𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆) → (𝐴 ++ 𝐵) ∈ Word 𝑆) | |
| 7 | 1, 5, 6 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴 ++ 𝐵) ∈ Word 𝑆) |
| 8 | lencl 14505 | . . . . . 6 ⊢ ((𝐴 ++ 𝐵) ∈ Word 𝑆 → (♯‘(𝐴 ++ 𝐵)) ∈ ℕ0) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ ℕ0) |
| 10 | 9 | nn0zd 12562 | . . . 4 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ ℤ) |
| 11 | 3 | nn0red 12511 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐴) ∈ ℝ) |
| 12 | lencl 14505 | . . . . . . 7 ⊢ (𝐵 ∈ Word 𝑆 → (♯‘𝐵) ∈ ℕ0) | |
| 13 | 5, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
| 14 | nn0addge1 12495 | . . . . . 6 ⊢ (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℕ0) → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝐵))) | |
| 15 | 11, 13, 14 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝐵))) |
| 16 | ccatlen 14547 | . . . . . 6 ⊢ ((𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) | |
| 17 | 1, 5, 16 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) |
| 18 | 15, 17 | breqtrrd 5138 | . . . 4 ⊢ (𝜑 → (♯‘𝐴) ≤ (♯‘(𝐴 ++ 𝐵))) |
| 19 | eluz2 12806 | . . . 4 ⊢ ((♯‘(𝐴 ++ 𝐵)) ∈ (ℤ≥‘(♯‘𝐴)) ↔ ((♯‘𝐴) ∈ ℤ ∧ (♯‘(𝐴 ++ 𝐵)) ∈ ℤ ∧ (♯‘𝐴) ≤ (♯‘(𝐴 ++ 𝐵)))) | |
| 20 | 4, 10, 18, 19 | syl3anbrc 1344 | . . 3 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ (ℤ≥‘(♯‘𝐴))) |
| 21 | fzoss2 13655 | . . 3 ⊢ ((♯‘(𝐴 ++ 𝐵)) ∈ (ℤ≥‘(♯‘𝐴)) → (0..^(♯‘𝐴)) ⊆ (0..^(♯‘(𝐴 ++ 𝐵)))) | |
| 22 | 20, 21 | syl 17 | . 2 ⊢ (𝜑 → (0..^(♯‘𝐴)) ⊆ (0..^(♯‘(𝐴 ++ 𝐵)))) |
| 23 | eqidd 2731 | . . . 4 ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐴)) | |
| 24 | 23, 1 | wrdfd 14491 | . . 3 ⊢ (𝜑 → 𝐴:(0..^(♯‘𝐴))⟶𝑆) |
| 25 | 24 | fdmd 6701 | . 2 ⊢ (𝜑 → dom 𝐴 = (0..^(♯‘𝐴))) |
| 26 | eqidd 2731 | . . . 4 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) = (♯‘(𝐴 ++ 𝐵))) | |
| 27 | 26, 7 | wrdfd 14491 | . . 3 ⊢ (𝜑 → (𝐴 ++ 𝐵):(0..^(♯‘(𝐴 ++ 𝐵)))⟶𝑆) |
| 28 | 27 | fdmd 6701 | . 2 ⊢ (𝜑 → dom (𝐴 ++ 𝐵) = (0..^(♯‘(𝐴 ++ 𝐵)))) |
| 29 | 22, 25, 28 | 3sstr4d 4005 | 1 ⊢ (𝜑 → dom 𝐴 ⊆ dom (𝐴 ++ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 + caddc 11078 ≤ cle 11216 ℕ0cn0 12449 ℤcz 12536 ℤ≥cuz 12800 ..^cfzo 13622 ♯chash 14302 Word cword 14485 ++ cconcat 14542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-concat 14543 |
| This theorem is referenced by: chnind 32944 |
| Copyright terms: Public domain | W3C validator |