| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccatdmss | Structured version Visualization version GIF version | ||
| Description: The domain of a concatenated word is a superset of the domain of the first word. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| ccatdmss.1 | ⊢ (𝜑 → 𝐴 ∈ Word 𝑆) |
| ccatdmss.2 | ⊢ (𝜑 → 𝐵 ∈ Word 𝑆) |
| Ref | Expression |
|---|---|
| ccatdmss | ⊢ (𝜑 → dom 𝐴 ⊆ dom (𝐴 ++ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatdmss.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Word 𝑆) | |
| 2 | lencl 14442 | . . . . . 6 ⊢ (𝐴 ∈ Word 𝑆 → (♯‘𝐴) ∈ ℕ0) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
| 4 | 3 | nn0zd 12500 | . . . 4 ⊢ (𝜑 → (♯‘𝐴) ∈ ℤ) |
| 5 | ccatdmss.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ Word 𝑆) | |
| 6 | ccatcl 14483 | . . . . . . 7 ⊢ ((𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆) → (𝐴 ++ 𝐵) ∈ Word 𝑆) | |
| 7 | 1, 5, 6 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴 ++ 𝐵) ∈ Word 𝑆) |
| 8 | lencl 14442 | . . . . . 6 ⊢ ((𝐴 ++ 𝐵) ∈ Word 𝑆 → (♯‘(𝐴 ++ 𝐵)) ∈ ℕ0) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ ℕ0) |
| 10 | 9 | nn0zd 12500 | . . . 4 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ ℤ) |
| 11 | 3 | nn0red 12450 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐴) ∈ ℝ) |
| 12 | lencl 14442 | . . . . . . 7 ⊢ (𝐵 ∈ Word 𝑆 → (♯‘𝐵) ∈ ℕ0) | |
| 13 | 5, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
| 14 | nn0addge1 12434 | . . . . . 6 ⊢ (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℕ0) → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝐵))) | |
| 15 | 11, 13, 14 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝐵))) |
| 16 | ccatlen 14484 | . . . . . 6 ⊢ ((𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) | |
| 17 | 1, 5, 16 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) |
| 18 | 15, 17 | breqtrrd 5121 | . . . 4 ⊢ (𝜑 → (♯‘𝐴) ≤ (♯‘(𝐴 ++ 𝐵))) |
| 19 | eluz2 12744 | . . . 4 ⊢ ((♯‘(𝐴 ++ 𝐵)) ∈ (ℤ≥‘(♯‘𝐴)) ↔ ((♯‘𝐴) ∈ ℤ ∧ (♯‘(𝐴 ++ 𝐵)) ∈ ℤ ∧ (♯‘𝐴) ≤ (♯‘(𝐴 ++ 𝐵)))) | |
| 20 | 4, 10, 18, 19 | syl3anbrc 1344 | . . 3 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ (ℤ≥‘(♯‘𝐴))) |
| 21 | fzoss2 13589 | . . 3 ⊢ ((♯‘(𝐴 ++ 𝐵)) ∈ (ℤ≥‘(♯‘𝐴)) → (0..^(♯‘𝐴)) ⊆ (0..^(♯‘(𝐴 ++ 𝐵)))) | |
| 22 | 20, 21 | syl 17 | . 2 ⊢ (𝜑 → (0..^(♯‘𝐴)) ⊆ (0..^(♯‘(𝐴 ++ 𝐵)))) |
| 23 | eqidd 2734 | . . . 4 ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐴)) | |
| 24 | 23, 1 | wrdfd 14428 | . . 3 ⊢ (𝜑 → 𝐴:(0..^(♯‘𝐴))⟶𝑆) |
| 25 | 24 | fdmd 6666 | . 2 ⊢ (𝜑 → dom 𝐴 = (0..^(♯‘𝐴))) |
| 26 | eqidd 2734 | . . . 4 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) = (♯‘(𝐴 ++ 𝐵))) | |
| 27 | 26, 7 | wrdfd 14428 | . . 3 ⊢ (𝜑 → (𝐴 ++ 𝐵):(0..^(♯‘(𝐴 ++ 𝐵)))⟶𝑆) |
| 28 | 27 | fdmd 6666 | . 2 ⊢ (𝜑 → dom (𝐴 ++ 𝐵) = (0..^(♯‘(𝐴 ++ 𝐵)))) |
| 29 | 22, 25, 28 | 3sstr4d 3986 | 1 ⊢ (𝜑 → dom 𝐴 ⊆ dom (𝐴 ++ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5093 dom cdm 5619 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 0cc0 11013 + caddc 11016 ≤ cle 11154 ℕ0cn0 12388 ℤcz 12475 ℤ≥cuz 12738 ..^cfzo 13556 ♯chash 14239 Word cword 14422 ++ cconcat 14479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-concat 14480 |
| This theorem is referenced by: chnind 18529 |
| Copyright terms: Public domain | W3C validator |