Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ccatdmss Structured version   Visualization version   GIF version

Theorem ccatdmss 32919
Description: The domain of a concatenated word is a superset of the domain of the first word. (Contributed by Thierry Arnoux, 19-Jun-2025.)
Hypotheses
Ref Expression
ccatdmss.1 (𝜑𝐴 ∈ Word 𝑆)
ccatdmss.2 (𝜑𝐵 ∈ Word 𝑆)
Assertion
Ref Expression
ccatdmss (𝜑 → dom 𝐴 ⊆ dom (𝐴 ++ 𝐵))

Proof of Theorem ccatdmss
StepHypRef Expression
1 ccatdmss.1 . . . . . 6 (𝜑𝐴 ∈ Word 𝑆)
2 lencl 14568 . . . . . 6 (𝐴 ∈ Word 𝑆 → (♯‘𝐴) ∈ ℕ0)
31, 2syl 17 . . . . 5 (𝜑 → (♯‘𝐴) ∈ ℕ0)
43nn0zd 12637 . . . 4 (𝜑 → (♯‘𝐴) ∈ ℤ)
5 ccatdmss.2 . . . . . . 7 (𝜑𝐵 ∈ Word 𝑆)
6 ccatcl 14609 . . . . . . 7 ((𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆) → (𝐴 ++ 𝐵) ∈ Word 𝑆)
71, 5, 6syl2anc 584 . . . . . 6 (𝜑 → (𝐴 ++ 𝐵) ∈ Word 𝑆)
8 lencl 14568 . . . . . 6 ((𝐴 ++ 𝐵) ∈ Word 𝑆 → (♯‘(𝐴 ++ 𝐵)) ∈ ℕ0)
97, 8syl 17 . . . . 5 (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ ℕ0)
109nn0zd 12637 . . . 4 (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ ℤ)
113nn0red 12586 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ ℝ)
12 lencl 14568 . . . . . . 7 (𝐵 ∈ Word 𝑆 → (♯‘𝐵) ∈ ℕ0)
135, 12syl 17 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℕ0)
14 nn0addge1 12570 . . . . . 6 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℕ0) → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝐵)))
1511, 13, 14syl2anc 584 . . . . 5 (𝜑 → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝐵)))
16 ccatlen 14610 . . . . . 6 ((𝐴 ∈ Word 𝑆𝐵 ∈ Word 𝑆) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
171, 5, 16syl2anc 584 . . . . 5 (𝜑 → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
1815, 17breqtrrd 5176 . . . 4 (𝜑 → (♯‘𝐴) ≤ (♯‘(𝐴 ++ 𝐵)))
19 eluz2 12882 . . . 4 ((♯‘(𝐴 ++ 𝐵)) ∈ (ℤ‘(♯‘𝐴)) ↔ ((♯‘𝐴) ∈ ℤ ∧ (♯‘(𝐴 ++ 𝐵)) ∈ ℤ ∧ (♯‘𝐴) ≤ (♯‘(𝐴 ++ 𝐵))))
204, 10, 18, 19syl3anbrc 1342 . . 3 (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ (ℤ‘(♯‘𝐴)))
21 fzoss2 13724 . . 3 ((♯‘(𝐴 ++ 𝐵)) ∈ (ℤ‘(♯‘𝐴)) → (0..^(♯‘𝐴)) ⊆ (0..^(♯‘(𝐴 ++ 𝐵))))
2220, 21syl 17 . 2 (𝜑 → (0..^(♯‘𝐴)) ⊆ (0..^(♯‘(𝐴 ++ 𝐵))))
23 eqidd 2736 . . . 4 (𝜑 → (♯‘𝐴) = (♯‘𝐴))
2423, 1wrdfd 32903 . . 3 (𝜑𝐴:(0..^(♯‘𝐴))⟶𝑆)
2524fdmd 6747 . 2 (𝜑 → dom 𝐴 = (0..^(♯‘𝐴)))
26 eqidd 2736 . . . 4 (𝜑 → (♯‘(𝐴 ++ 𝐵)) = (♯‘(𝐴 ++ 𝐵)))
2726, 7wrdfd 32903 . . 3 (𝜑 → (𝐴 ++ 𝐵):(0..^(♯‘(𝐴 ++ 𝐵)))⟶𝑆)
2827fdmd 6747 . 2 (𝜑 → dom (𝐴 ++ 𝐵) = (0..^(♯‘(𝐴 ++ 𝐵))))
2922, 25, 283sstr4d 4043 1 (𝜑 → dom 𝐴 ⊆ dom (𝐴 ++ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963   class class class wbr 5148  dom cdm 5689  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153   + caddc 11156  cle 11294  0cn0 12524  cz 12611  cuz 12876  ..^cfzo 13691  chash 14366  Word cword 14549   ++ cconcat 14605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606
This theorem is referenced by:  chnind  32985
  Copyright terms: Public domain W3C validator