| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccatdmss | Structured version Visualization version GIF version | ||
| Description: The domain of a concatenated word is a superset of the domain of the first word. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| ccatdmss.1 | ⊢ (𝜑 → 𝐴 ∈ Word 𝑆) |
| ccatdmss.2 | ⊢ (𝜑 → 𝐵 ∈ Word 𝑆) |
| Ref | Expression |
|---|---|
| ccatdmss | ⊢ (𝜑 → dom 𝐴 ⊆ dom (𝐴 ++ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatdmss.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Word 𝑆) | |
| 2 | lencl 14440 | . . . . . 6 ⊢ (𝐴 ∈ Word 𝑆 → (♯‘𝐴) ∈ ℕ0) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
| 4 | 3 | nn0zd 12494 | . . . 4 ⊢ (𝜑 → (♯‘𝐴) ∈ ℤ) |
| 5 | ccatdmss.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ Word 𝑆) | |
| 6 | ccatcl 14481 | . . . . . . 7 ⊢ ((𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆) → (𝐴 ++ 𝐵) ∈ Word 𝑆) | |
| 7 | 1, 5, 6 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴 ++ 𝐵) ∈ Word 𝑆) |
| 8 | lencl 14440 | . . . . . 6 ⊢ ((𝐴 ++ 𝐵) ∈ Word 𝑆 → (♯‘(𝐴 ++ 𝐵)) ∈ ℕ0) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ ℕ0) |
| 10 | 9 | nn0zd 12494 | . . . 4 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ ℤ) |
| 11 | 3 | nn0red 12443 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐴) ∈ ℝ) |
| 12 | lencl 14440 | . . . . . . 7 ⊢ (𝐵 ∈ Word 𝑆 → (♯‘𝐵) ∈ ℕ0) | |
| 13 | 5, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
| 14 | nn0addge1 12427 | . . . . . 6 ⊢ (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℕ0) → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝐵))) | |
| 15 | 11, 13, 14 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝐵))) |
| 16 | ccatlen 14482 | . . . . . 6 ⊢ ((𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) | |
| 17 | 1, 5, 16 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) |
| 18 | 15, 17 | breqtrrd 5119 | . . . 4 ⊢ (𝜑 → (♯‘𝐴) ≤ (♯‘(𝐴 ++ 𝐵))) |
| 19 | eluz2 12738 | . . . 4 ⊢ ((♯‘(𝐴 ++ 𝐵)) ∈ (ℤ≥‘(♯‘𝐴)) ↔ ((♯‘𝐴) ∈ ℤ ∧ (♯‘(𝐴 ++ 𝐵)) ∈ ℤ ∧ (♯‘𝐴) ≤ (♯‘(𝐴 ++ 𝐵)))) | |
| 20 | 4, 10, 18, 19 | syl3anbrc 1344 | . . 3 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ (ℤ≥‘(♯‘𝐴))) |
| 21 | fzoss2 13587 | . . 3 ⊢ ((♯‘(𝐴 ++ 𝐵)) ∈ (ℤ≥‘(♯‘𝐴)) → (0..^(♯‘𝐴)) ⊆ (0..^(♯‘(𝐴 ++ 𝐵)))) | |
| 22 | 20, 21 | syl 17 | . 2 ⊢ (𝜑 → (0..^(♯‘𝐴)) ⊆ (0..^(♯‘(𝐴 ++ 𝐵)))) |
| 23 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐴)) | |
| 24 | 23, 1 | wrdfd 14426 | . . 3 ⊢ (𝜑 → 𝐴:(0..^(♯‘𝐴))⟶𝑆) |
| 25 | 24 | fdmd 6661 | . 2 ⊢ (𝜑 → dom 𝐴 = (0..^(♯‘𝐴))) |
| 26 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) = (♯‘(𝐴 ++ 𝐵))) | |
| 27 | 26, 7 | wrdfd 14426 | . . 3 ⊢ (𝜑 → (𝐴 ++ 𝐵):(0..^(♯‘(𝐴 ++ 𝐵)))⟶𝑆) |
| 28 | 27 | fdmd 6661 | . 2 ⊢ (𝜑 → dom (𝐴 ++ 𝐵) = (0..^(♯‘(𝐴 ++ 𝐵)))) |
| 29 | 22, 25, 28 | 3sstr4d 3990 | 1 ⊢ (𝜑 → dom 𝐴 ⊆ dom (𝐴 ++ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 class class class wbr 5091 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 + caddc 11009 ≤ cle 11147 ℕ0cn0 12381 ℤcz 12468 ℤ≥cuz 12732 ..^cfzo 13554 ♯chash 14237 Word cword 14420 ++ cconcat 14477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 |
| This theorem is referenced by: chnind 18527 |
| Copyright terms: Public domain | W3C validator |