| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ccatdmss | Structured version Visualization version GIF version | ||
| Description: The domain of a concatenated word is a superset of the domain of the first word. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| ccatdmss.1 | ⊢ (𝜑 → 𝐴 ∈ Word 𝑆) |
| ccatdmss.2 | ⊢ (𝜑 → 𝐵 ∈ Word 𝑆) |
| Ref | Expression |
|---|---|
| ccatdmss | ⊢ (𝜑 → dom 𝐴 ⊆ dom (𝐴 ++ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatdmss.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Word 𝑆) | |
| 2 | lencl 14556 | . . . . . 6 ⊢ (𝐴 ∈ Word 𝑆 → (♯‘𝐴) ∈ ℕ0) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
| 4 | 3 | nn0zd 12619 | . . . 4 ⊢ (𝜑 → (♯‘𝐴) ∈ ℤ) |
| 5 | ccatdmss.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ Word 𝑆) | |
| 6 | ccatcl 14597 | . . . . . . 7 ⊢ ((𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆) → (𝐴 ++ 𝐵) ∈ Word 𝑆) | |
| 7 | 1, 5, 6 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴 ++ 𝐵) ∈ Word 𝑆) |
| 8 | lencl 14556 | . . . . . 6 ⊢ ((𝐴 ++ 𝐵) ∈ Word 𝑆 → (♯‘(𝐴 ++ 𝐵)) ∈ ℕ0) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ ℕ0) |
| 10 | 9 | nn0zd 12619 | . . . 4 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ ℤ) |
| 11 | 3 | nn0red 12568 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐴) ∈ ℝ) |
| 12 | lencl 14556 | . . . . . . 7 ⊢ (𝐵 ∈ Word 𝑆 → (♯‘𝐵) ∈ ℕ0) | |
| 13 | 5, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ0) |
| 14 | nn0addge1 12552 | . . . . . 6 ⊢ (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℕ0) → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝐵))) | |
| 15 | 11, 13, 14 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (♯‘𝐴) ≤ ((♯‘𝐴) + (♯‘𝐵))) |
| 16 | ccatlen 14598 | . . . . . 6 ⊢ ((𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) | |
| 17 | 1, 5, 16 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) |
| 18 | 15, 17 | breqtrrd 5152 | . . . 4 ⊢ (𝜑 → (♯‘𝐴) ≤ (♯‘(𝐴 ++ 𝐵))) |
| 19 | eluz2 12863 | . . . 4 ⊢ ((♯‘(𝐴 ++ 𝐵)) ∈ (ℤ≥‘(♯‘𝐴)) ↔ ((♯‘𝐴) ∈ ℤ ∧ (♯‘(𝐴 ++ 𝐵)) ∈ ℤ ∧ (♯‘𝐴) ≤ (♯‘(𝐴 ++ 𝐵)))) | |
| 20 | 4, 10, 18, 19 | syl3anbrc 1344 | . . 3 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) ∈ (ℤ≥‘(♯‘𝐴))) |
| 21 | fzoss2 13709 | . . 3 ⊢ ((♯‘(𝐴 ++ 𝐵)) ∈ (ℤ≥‘(♯‘𝐴)) → (0..^(♯‘𝐴)) ⊆ (0..^(♯‘(𝐴 ++ 𝐵)))) | |
| 22 | 20, 21 | syl 17 | . 2 ⊢ (𝜑 → (0..^(♯‘𝐴)) ⊆ (0..^(♯‘(𝐴 ++ 𝐵)))) |
| 23 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (♯‘𝐴) = (♯‘𝐴)) | |
| 24 | 23, 1 | wrdfd 14542 | . . 3 ⊢ (𝜑 → 𝐴:(0..^(♯‘𝐴))⟶𝑆) |
| 25 | 24 | fdmd 6721 | . 2 ⊢ (𝜑 → dom 𝐴 = (0..^(♯‘𝐴))) |
| 26 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (♯‘(𝐴 ++ 𝐵)) = (♯‘(𝐴 ++ 𝐵))) | |
| 27 | 26, 7 | wrdfd 14542 | . . 3 ⊢ (𝜑 → (𝐴 ++ 𝐵):(0..^(♯‘(𝐴 ++ 𝐵)))⟶𝑆) |
| 28 | 27 | fdmd 6721 | . 2 ⊢ (𝜑 → dom (𝐴 ++ 𝐵) = (0..^(♯‘(𝐴 ++ 𝐵)))) |
| 29 | 22, 25, 28 | 3sstr4d 4019 | 1 ⊢ (𝜑 → dom 𝐴 ⊆ dom (𝐴 ++ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 class class class wbr 5124 dom cdm 5659 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 0cc0 11134 + caddc 11137 ≤ cle 11275 ℕ0cn0 12506 ℤcz 12593 ℤ≥cuz 12857 ..^cfzo 13676 ♯chash 14353 Word cword 14536 ++ cconcat 14593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-concat 14594 |
| This theorem is referenced by: chnind 32996 |
| Copyright terms: Public domain | W3C validator |