MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgr3rotr Structured version   Visualization version   GIF version

Theorem cgr3rotr 28514
Description: Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 1-Aug-2020.)
Hypotheses
Ref Expression
tgcgrxfr.p 𝑃 = (Base‘𝐺)
tgcgrxfr.m = (dist‘𝐺)
tgcgrxfr.i 𝐼 = (Itv‘𝐺)
tgcgrxfr.r = (cgrG‘𝐺)
tgcgrxfr.g (𝜑𝐺 ∈ TarskiG)
tgbtwnxfr.a (𝜑𝐴𝑃)
tgbtwnxfr.b (𝜑𝐵𝑃)
tgbtwnxfr.c (𝜑𝐶𝑃)
tgbtwnxfr.d (𝜑𝐷𝑃)
tgbtwnxfr.e (𝜑𝐸𝑃)
tgbtwnxfr.f (𝜑𝐹𝑃)
tgbtwnxfr.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
Assertion
Ref Expression
cgr3rotr (𝜑 → ⟨“𝐶𝐴𝐵”⟩ ⟨“𝐹𝐷𝐸”⟩)

Proof of Theorem cgr3rotr
StepHypRef Expression
1 tgcgrxfr.p . 2 𝑃 = (Base‘𝐺)
2 tgcgrxfr.m . 2 = (dist‘𝐺)
3 tgcgrxfr.i . 2 𝐼 = (Itv‘𝐺)
4 tgcgrxfr.r . 2 = (cgrG‘𝐺)
5 tgcgrxfr.g . 2 (𝜑𝐺 ∈ TarskiG)
6 tgbtwnxfr.a . 2 (𝜑𝐴𝑃)
7 tgbtwnxfr.c . 2 (𝜑𝐶𝑃)
8 tgbtwnxfr.b . 2 (𝜑𝐵𝑃)
9 tgbtwnxfr.d . 2 (𝜑𝐷𝑃)
10 tgbtwnxfr.f . 2 (𝜑𝐹𝑃)
11 tgbtwnxfr.e . 2 (𝜑𝐸𝑃)
12 tgbtwnxfr.2 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
131, 2, 3, 4, 5, 6, 8, 7, 9, 11, 10, 12cgr3swap23 28512 . 2 (𝜑 → ⟨“𝐴𝐶𝐵”⟩ ⟨“𝐷𝐹𝐸”⟩)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13cgr3swap12 28511 1 (𝜑 → ⟨“𝐶𝐴𝐵”⟩ ⟨“𝐹𝐷𝐸”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6489  ⟨“cs3 14759  Basecbs 17130  distcds 17180  TarskiGcstrkg 28415  Itvcitv 28421  cgrGccgrg 28498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-pm 8762  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-n0 12392  df-z 12479  df-uz 12743  df-fz 13418  df-fzo 13565  df-hash 14248  df-word 14431  df-concat 14488  df-s1 14514  df-s2 14765  df-s3 14766  df-trkgc 28436  df-trkgcb 28438  df-trkg 28441  df-cgrg 28499
This theorem is referenced by:  tgsas2  28844
  Copyright terms: Public domain W3C validator