MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgr3rotl Structured version   Visualization version   GIF version

Theorem cgr3rotl 26916
Description: Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 1-Aug-2020.)
Hypotheses
Ref Expression
tgcgrxfr.p 𝑃 = (Base‘𝐺)
tgcgrxfr.m = (dist‘𝐺)
tgcgrxfr.i 𝐼 = (Itv‘𝐺)
tgcgrxfr.r = (cgrG‘𝐺)
tgcgrxfr.g (𝜑𝐺 ∈ TarskiG)
tgbtwnxfr.a (𝜑𝐴𝑃)
tgbtwnxfr.b (𝜑𝐵𝑃)
tgbtwnxfr.c (𝜑𝐶𝑃)
tgbtwnxfr.d (𝜑𝐷𝑃)
tgbtwnxfr.e (𝜑𝐸𝑃)
tgbtwnxfr.f (𝜑𝐹𝑃)
tgbtwnxfr.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
Assertion
Ref Expression
cgr3rotl (𝜑 → ⟨“𝐵𝐶𝐴”⟩ ⟨“𝐸𝐹𝐷”⟩)

Proof of Theorem cgr3rotl
StepHypRef Expression
1 tgcgrxfr.p . 2 𝑃 = (Base‘𝐺)
2 tgcgrxfr.m . 2 = (dist‘𝐺)
3 tgcgrxfr.i . 2 𝐼 = (Itv‘𝐺)
4 tgcgrxfr.r . 2 = (cgrG‘𝐺)
5 tgcgrxfr.g . 2 (𝜑𝐺 ∈ TarskiG)
6 tgbtwnxfr.b . 2 (𝜑𝐵𝑃)
7 tgbtwnxfr.a . 2 (𝜑𝐴𝑃)
8 tgbtwnxfr.c . 2 (𝜑𝐶𝑃)
9 tgbtwnxfr.e . 2 (𝜑𝐸𝑃)
10 tgbtwnxfr.d . 2 (𝜑𝐷𝑃)
11 tgbtwnxfr.f . 2 (𝜑𝐹𝑃)
12 tgbtwnxfr.2 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
131, 2, 3, 4, 5, 7, 6, 8, 10, 9, 11, 12cgr3swap12 26912 . 2 (𝜑 → ⟨“𝐵𝐴𝐶”⟩ ⟨“𝐸𝐷𝐹”⟩)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13cgr3swap23 26913 1 (𝜑 → ⟨“𝐵𝐶𝐴”⟩ ⟨“𝐸𝐹𝐷”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2101   class class class wbr 5077  cfv 6447  ⟨“cs3 14583  Basecbs 16940  distcds 16999  TarskiGcstrkg 26816  Itvcitv 26822  cgrGccgrg 26899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-er 8518  df-pm 8638  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-card 9725  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-nn 12002  df-2 12064  df-3 12065  df-n0 12262  df-z 12348  df-uz 12611  df-fz 13268  df-fzo 13411  df-hash 14073  df-word 14246  df-concat 14302  df-s1 14329  df-s2 14589  df-s3 14590  df-trkgc 26837  df-trkgcb 26839  df-trkg 26842  df-cgrg 26900
This theorem is referenced by:  cgrahl  27216  tgsas3  27246
  Copyright terms: Public domain W3C validator