| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iserabs | Structured version Visualization version GIF version | ||
| Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 27-May-2014.) |
| Ref | Expression |
|---|---|
| iserabs.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| iserabs.2 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) |
| iserabs.3 | ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵) |
| iserabs.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| iserabs.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| iserabs.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
| Ref | Expression |
|---|---|
| iserabs | ⊢ (𝜑 → (abs‘𝐴) ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iserabs.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | iserabs.5 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | iserabs.2 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) | |
| 4 | 1 | fvexi 6920 | . . . . 5 ⊢ 𝑍 ∈ V |
| 5 | 4 | mptex 7243 | . . . 4 ⊢ (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V) |
| 7 | iserabs.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 8 | 1, 2, 7 | serf 14071 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
| 9 | 8 | ffvelcdmda 7104 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ) |
| 10 | 2fveq3 6911 | . . . . 5 ⊢ (𝑚 = 𝑛 → (abs‘(seq𝑀( + , 𝐹)‘𝑚)) = (abs‘(seq𝑀( + , 𝐹)‘𝑛))) | |
| 11 | eqid 2737 | . . . . 5 ⊢ (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) = (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) | |
| 12 | fvex 6919 | . . . . 5 ⊢ (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ V | |
| 13 | 10, 11, 12 | fvmpt 7016 | . . . 4 ⊢ (𝑛 ∈ 𝑍 → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛))) |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛))) |
| 15 | 1, 3, 6, 2, 9, 14 | climabs 15640 | . 2 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ⇝ (abs‘𝐴)) |
| 16 | iserabs.3 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵) | |
| 17 | 9 | abscld 15475 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ ℝ) |
| 18 | 14, 17 | eqeltrd 2841 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ∈ ℝ) |
| 19 | iserabs.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) | |
| 20 | 7 | abscld 15475 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
| 21 | 19, 20 | eqeltrd 2841 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) |
| 22 | 1, 2, 21 | serfre 14072 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ) |
| 23 | 22 | ffvelcdmda 7104 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ) |
| 24 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) | |
| 25 | 24, 1 | eleqtrdi 2851 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 26 | elfzuz 13560 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 27 | 26, 1 | eleqtrrdi 2852 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ 𝑍) |
| 28 | 27, 7 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) ∈ ℂ) |
| 29 | 28 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) ∈ ℂ) |
| 30 | 27, 19 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
| 31 | 30 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
| 32 | 25, 29, 31 | seqabs 15850 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ≤ (seq𝑀( + , 𝐺)‘𝑛)) |
| 33 | 14, 32 | eqbrtrd 5165 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ≤ (seq𝑀( + , 𝐺)‘𝑛)) |
| 34 | 1, 2, 15, 16, 18, 23, 33 | climle 15676 | 1 ⊢ (𝜑 → (abs‘𝐴) ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 + caddc 11158 ≤ cle 11296 ℤcz 12613 ℤ≥cuz 12878 ...cfz 13547 seqcseq 14042 abscabs 15273 ⇝ cli 15520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-rlim 15525 df-sum 15723 |
| This theorem is referenced by: eftlub 16145 abelthlem7 26482 |
| Copyright terms: Public domain | W3C validator |