| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iserabs | Structured version Visualization version GIF version | ||
| Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 27-May-2014.) |
| Ref | Expression |
|---|---|
| iserabs.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| iserabs.2 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) |
| iserabs.3 | ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵) |
| iserabs.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| iserabs.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| iserabs.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
| Ref | Expression |
|---|---|
| iserabs | ⊢ (𝜑 → (abs‘𝐴) ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iserabs.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | iserabs.5 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | iserabs.2 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) | |
| 4 | 1 | fvexi 6840 | . . . . 5 ⊢ 𝑍 ∈ V |
| 5 | 4 | mptex 7163 | . . . 4 ⊢ (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V) |
| 7 | iserabs.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 8 | 1, 2, 7 | serf 13955 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
| 9 | 8 | ffvelcdmda 7022 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ) |
| 10 | 2fveq3 6831 | . . . . 5 ⊢ (𝑚 = 𝑛 → (abs‘(seq𝑀( + , 𝐹)‘𝑚)) = (abs‘(seq𝑀( + , 𝐹)‘𝑛))) | |
| 11 | eqid 2729 | . . . . 5 ⊢ (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) = (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) | |
| 12 | fvex 6839 | . . . . 5 ⊢ (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ V | |
| 13 | 10, 11, 12 | fvmpt 6934 | . . . 4 ⊢ (𝑛 ∈ 𝑍 → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛))) |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛))) |
| 15 | 1, 3, 6, 2, 9, 14 | climabs 15529 | . 2 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ⇝ (abs‘𝐴)) |
| 16 | iserabs.3 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵) | |
| 17 | 9 | abscld 15364 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ ℝ) |
| 18 | 14, 17 | eqeltrd 2828 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ∈ ℝ) |
| 19 | iserabs.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) | |
| 20 | 7 | abscld 15364 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
| 21 | 19, 20 | eqeltrd 2828 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) |
| 22 | 1, 2, 21 | serfre 13956 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ) |
| 23 | 22 | ffvelcdmda 7022 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ) |
| 24 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) | |
| 25 | 24, 1 | eleqtrdi 2838 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 26 | elfzuz 13441 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 27 | 26, 1 | eleqtrrdi 2839 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ 𝑍) |
| 28 | 27, 7 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) ∈ ℂ) |
| 29 | 28 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) ∈ ℂ) |
| 30 | 27, 19 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
| 31 | 30 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
| 32 | 25, 29, 31 | seqabs 15739 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ≤ (seq𝑀( + , 𝐺)‘𝑛)) |
| 33 | 14, 32 | eqbrtrd 5117 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ≤ (seq𝑀( + , 𝐺)‘𝑛)) |
| 34 | 1, 2, 15, 16, 18, 23, 33 | climle 15565 | 1 ⊢ (𝜑 → (abs‘𝐴) ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 + caddc 11031 ≤ cle 11169 ℤcz 12489 ℤ≥cuz 12753 ...cfz 13428 seqcseq 13926 abscabs 15159 ⇝ cli 15409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-fl 13714 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-rlim 15414 df-sum 15612 |
| This theorem is referenced by: eftlub 16036 abelthlem7 26364 |
| Copyright terms: Public domain | W3C validator |