MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserabs Structured version   Visualization version   GIF version

Theorem iserabs 15379
Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
iserabs.1 𝑍 = (ℤ𝑀)
iserabs.2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
iserabs.3 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
iserabs.5 (𝜑𝑀 ∈ ℤ)
iserabs.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
iserabs.7 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
Assertion
Ref Expression
iserabs (𝜑 → (abs‘𝐴) ≤ 𝐵)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iserabs
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iserabs.1 . 2 𝑍 = (ℤ𝑀)
2 iserabs.5 . 2 (𝜑𝑀 ∈ ℤ)
3 iserabs.2 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
41fvexi 6731 . . . . 5 𝑍 ∈ V
54mptex 7039 . . . 4 (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V
65a1i 11 . . 3 (𝜑 → (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V)
7 iserabs.6 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
81, 2, 7serf 13604 . . . 4 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
98ffvelrnda 6904 . . 3 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
10 2fveq3 6722 . . . . 5 (𝑚 = 𝑛 → (abs‘(seq𝑀( + , 𝐹)‘𝑚)) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
11 eqid 2737 . . . . 5 (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) = (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))
12 fvex 6730 . . . . 5 (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ V
1310, 11, 12fvmpt 6818 . . . 4 (𝑛𝑍 → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
1413adantl 485 . . 3 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
151, 3, 6, 2, 9, 14climabs 15165 . 2 (𝜑 → (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ⇝ (abs‘𝐴))
16 iserabs.3 . 2 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
179abscld 15000 . . 3 ((𝜑𝑛𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ ℝ)
1814, 17eqeltrd 2838 . 2 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ∈ ℝ)
19 iserabs.7 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
207abscld 15000 . . . . 5 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
2119, 20eqeltrd 2838 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
221, 2, 21serfre 13605 . . 3 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ)
2322ffvelrnda 6904 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
24 simpr 488 . . . . 5 ((𝜑𝑛𝑍) → 𝑛𝑍)
2524, 1eleqtrdi 2848 . . . 4 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
26 elfzuz 13108 . . . . . . 7 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
2726, 1eleqtrrdi 2849 . . . . . 6 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
2827, 7sylan2 596 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
2928adantlr 715 . . . 4 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
3027, 19sylan2 596 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
3130adantlr 715 . . . 4 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
3225, 29, 31seqabs 15378 . . 3 ((𝜑𝑛𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ≤ (seq𝑀( + , 𝐺)‘𝑛))
3314, 32eqbrtrd 5075 . 2 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ≤ (seq𝑀( + , 𝐺)‘𝑛))
341, 2, 15, 16, 18, 23, 33climle 15201 1 (𝜑 → (abs‘𝐴) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3408   class class class wbr 5053  cmpt 5135  cfv 6380  (class class class)co 7213  cc 10727  cr 10728   + caddc 10732  cle 10868  cz 12176  cuz 12438  ...cfz 13095  seqcseq 13574  abscabs 14797  cli 15045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-sum 15250
This theorem is referenced by:  eftlub  15670  abelthlem7  25330
  Copyright terms: Public domain W3C validator