Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iserabs | Structured version Visualization version GIF version |
Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
iserabs.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
iserabs.2 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) |
iserabs.3 | ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵) |
iserabs.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
iserabs.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
iserabs.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
Ref | Expression |
---|---|
iserabs | ⊢ (𝜑 → (abs‘𝐴) ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iserabs.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | iserabs.5 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | iserabs.2 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) | |
4 | 1 | fvexi 6825 | . . . . 5 ⊢ 𝑍 ∈ V |
5 | 4 | mptex 7138 | . . . 4 ⊢ (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V) |
7 | iserabs.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
8 | 1, 2, 7 | serf 13830 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
9 | 8 | ffvelcdmda 7000 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ) |
10 | 2fveq3 6816 | . . . . 5 ⊢ (𝑚 = 𝑛 → (abs‘(seq𝑀( + , 𝐹)‘𝑚)) = (abs‘(seq𝑀( + , 𝐹)‘𝑛))) | |
11 | eqid 2736 | . . . . 5 ⊢ (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) = (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) | |
12 | fvex 6824 | . . . . 5 ⊢ (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ V | |
13 | 10, 11, 12 | fvmpt 6914 | . . . 4 ⊢ (𝑛 ∈ 𝑍 → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛))) |
14 | 13 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛))) |
15 | 1, 3, 6, 2, 9, 14 | climabs 15389 | . 2 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ⇝ (abs‘𝐴)) |
16 | iserabs.3 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵) | |
17 | 9 | abscld 15224 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ ℝ) |
18 | 14, 17 | eqeltrd 2837 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ∈ ℝ) |
19 | iserabs.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) | |
20 | 7 | abscld 15224 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
21 | 19, 20 | eqeltrd 2837 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) |
22 | 1, 2, 21 | serfre 13831 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ) |
23 | 22 | ffvelcdmda 7000 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ) |
24 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) | |
25 | 24, 1 | eleqtrdi 2847 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ (ℤ≥‘𝑀)) |
26 | elfzuz 13331 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
27 | 26, 1 | eleqtrrdi 2848 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ 𝑍) |
28 | 27, 7 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) ∈ ℂ) |
29 | 28 | adantlr 712 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) ∈ ℂ) |
30 | 27, 19 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
31 | 30 | adantlr 712 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
32 | 25, 29, 31 | seqabs 15602 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ≤ (seq𝑀( + , 𝐺)‘𝑛)) |
33 | 14, 32 | eqbrtrd 5108 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ≤ (seq𝑀( + , 𝐺)‘𝑛)) |
34 | 1, 2, 15, 16, 18, 23, 33 | climle 15425 | 1 ⊢ (𝜑 → (abs‘𝐴) ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3440 class class class wbr 5086 ↦ cmpt 5169 ‘cfv 6465 (class class class)co 7316 ℂcc 10948 ℝcr 10949 + caddc 10953 ≤ cle 11089 ℤcz 12398 ℤ≥cuz 12661 ...cfz 13318 seqcseq 13800 abscabs 15021 ⇝ cli 15269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-inf2 9476 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-pre-sup 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-pm 8667 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-sup 9277 df-inf 9278 df-oi 9345 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-2 12115 df-3 12116 df-n0 12313 df-z 12399 df-uz 12662 df-rp 12810 df-fz 13319 df-fzo 13462 df-fl 13591 df-seq 13801 df-exp 13862 df-hash 14124 df-cj 14886 df-re 14887 df-im 14888 df-sqrt 15022 df-abs 15023 df-clim 15273 df-rlim 15274 df-sum 15474 |
This theorem is referenced by: eftlub 15894 abelthlem7 25677 |
Copyright terms: Public domain | W3C validator |