MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserabs Structured version   Visualization version   GIF version

Theorem iserabs 15714
Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
iserabs.1 𝑍 = (ℤ𝑀)
iserabs.2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
iserabs.3 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
iserabs.5 (𝜑𝑀 ∈ ℤ)
iserabs.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
iserabs.7 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
Assertion
Ref Expression
iserabs (𝜑 → (abs‘𝐴) ≤ 𝐵)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iserabs
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iserabs.1 . 2 𝑍 = (ℤ𝑀)
2 iserabs.5 . 2 (𝜑𝑀 ∈ ℤ)
3 iserabs.2 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
41fvexi 6831 . . . . 5 𝑍 ∈ V
54mptex 7152 . . . 4 (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V
65a1i 11 . . 3 (𝜑 → (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V)
7 iserabs.6 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
81, 2, 7serf 13929 . . . 4 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
98ffvelcdmda 7012 . . 3 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
10 2fveq3 6822 . . . . 5 (𝑚 = 𝑛 → (abs‘(seq𝑀( + , 𝐹)‘𝑚)) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
11 eqid 2730 . . . . 5 (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) = (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))
12 fvex 6830 . . . . 5 (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ V
1310, 11, 12fvmpt 6924 . . . 4 (𝑛𝑍 → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
1413adantl 481 . . 3 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
151, 3, 6, 2, 9, 14climabs 15503 . 2 (𝜑 → (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ⇝ (abs‘𝐴))
16 iserabs.3 . 2 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
179abscld 15338 . . 3 ((𝜑𝑛𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ ℝ)
1814, 17eqeltrd 2829 . 2 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ∈ ℝ)
19 iserabs.7 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
207abscld 15338 . . . . 5 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
2119, 20eqeltrd 2829 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
221, 2, 21serfre 13930 . . 3 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ)
2322ffvelcdmda 7012 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
24 simpr 484 . . . . 5 ((𝜑𝑛𝑍) → 𝑛𝑍)
2524, 1eleqtrdi 2839 . . . 4 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
26 elfzuz 13412 . . . . . . 7 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
2726, 1eleqtrrdi 2840 . . . . . 6 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
2827, 7sylan2 593 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
2928adantlr 715 . . . 4 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
3027, 19sylan2 593 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
3130adantlr 715 . . . 4 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
3225, 29, 31seqabs 15713 . . 3 ((𝜑𝑛𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ≤ (seq𝑀( + , 𝐺)‘𝑛))
3314, 32eqbrtrd 5111 . 2 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ≤ (seq𝑀( + , 𝐺)‘𝑛))
341, 2, 15, 16, 18, 23, 33climle 15539 1 (𝜑 → (abs‘𝐴) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  Vcvv 3434   class class class wbr 5089  cmpt 5170  cfv 6477  (class class class)co 7341  cc 10996  cr 10997   + caddc 11001  cle 11139  cz 12460  cuz 12724  ...cfz 13399  seqcseq 13900  abscabs 15133  cli 15383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-rp 12883  df-fz 13400  df-fzo 13547  df-fl 13688  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-rlim 15388  df-sum 15586
This theorem is referenced by:  eftlub  16010  abelthlem7  26368
  Copyright terms: Public domain W3C validator