![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iserabs | Structured version Visualization version GIF version |
Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
iserabs.1 | β’ π = (β€β₯βπ) |
iserabs.2 | β’ (π β seqπ( + , πΉ) β π΄) |
iserabs.3 | β’ (π β seqπ( + , πΊ) β π΅) |
iserabs.5 | β’ (π β π β β€) |
iserabs.6 | β’ ((π β§ π β π) β (πΉβπ) β β) |
iserabs.7 | β’ ((π β§ π β π) β (πΊβπ) = (absβ(πΉβπ))) |
Ref | Expression |
---|---|
iserabs | β’ (π β (absβπ΄) β€ π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iserabs.1 | . 2 β’ π = (β€β₯βπ) | |
2 | iserabs.5 | . 2 β’ (π β π β β€) | |
3 | iserabs.2 | . . 3 β’ (π β seqπ( + , πΉ) β π΄) | |
4 | 1 | fvexi 6905 | . . . . 5 β’ π β V |
5 | 4 | mptex 7224 | . . . 4 β’ (π β π β¦ (absβ(seqπ( + , πΉ)βπ))) β V |
6 | 5 | a1i 11 | . . 3 β’ (π β (π β π β¦ (absβ(seqπ( + , πΉ)βπ))) β V) |
7 | iserabs.6 | . . . . 5 β’ ((π β§ π β π) β (πΉβπ) β β) | |
8 | 1, 2, 7 | serf 13995 | . . . 4 β’ (π β seqπ( + , πΉ):πβΆβ) |
9 | 8 | ffvelcdmda 7086 | . . 3 β’ ((π β§ π β π) β (seqπ( + , πΉ)βπ) β β) |
10 | 2fveq3 6896 | . . . . 5 β’ (π = π β (absβ(seqπ( + , πΉ)βπ)) = (absβ(seqπ( + , πΉ)βπ))) | |
11 | eqid 2732 | . . . . 5 β’ (π β π β¦ (absβ(seqπ( + , πΉ)βπ))) = (π β π β¦ (absβ(seqπ( + , πΉ)βπ))) | |
12 | fvex 6904 | . . . . 5 β’ (absβ(seqπ( + , πΉ)βπ)) β V | |
13 | 10, 11, 12 | fvmpt 6998 | . . . 4 β’ (π β π β ((π β π β¦ (absβ(seqπ( + , πΉ)βπ)))βπ) = (absβ(seqπ( + , πΉ)βπ))) |
14 | 13 | adantl 482 | . . 3 β’ ((π β§ π β π) β ((π β π β¦ (absβ(seqπ( + , πΉ)βπ)))βπ) = (absβ(seqπ( + , πΉ)βπ))) |
15 | 1, 3, 6, 2, 9, 14 | climabs 15547 | . 2 β’ (π β (π β π β¦ (absβ(seqπ( + , πΉ)βπ))) β (absβπ΄)) |
16 | iserabs.3 | . 2 β’ (π β seqπ( + , πΊ) β π΅) | |
17 | 9 | abscld 15382 | . . 3 β’ ((π β§ π β π) β (absβ(seqπ( + , πΉ)βπ)) β β) |
18 | 14, 17 | eqeltrd 2833 | . 2 β’ ((π β§ π β π) β ((π β π β¦ (absβ(seqπ( + , πΉ)βπ)))βπ) β β) |
19 | iserabs.7 | . . . . 5 β’ ((π β§ π β π) β (πΊβπ) = (absβ(πΉβπ))) | |
20 | 7 | abscld 15382 | . . . . 5 β’ ((π β§ π β π) β (absβ(πΉβπ)) β β) |
21 | 19, 20 | eqeltrd 2833 | . . . 4 β’ ((π β§ π β π) β (πΊβπ) β β) |
22 | 1, 2, 21 | serfre 13996 | . . 3 β’ (π β seqπ( + , πΊ):πβΆβ) |
23 | 22 | ffvelcdmda 7086 | . 2 β’ ((π β§ π β π) β (seqπ( + , πΊ)βπ) β β) |
24 | simpr 485 | . . . . 5 β’ ((π β§ π β π) β π β π) | |
25 | 24, 1 | eleqtrdi 2843 | . . . 4 β’ ((π β§ π β π) β π β (β€β₯βπ)) |
26 | elfzuz 13496 | . . . . . . 7 β’ (π β (π...π) β π β (β€β₯βπ)) | |
27 | 26, 1 | eleqtrrdi 2844 | . . . . . 6 β’ (π β (π...π) β π β π) |
28 | 27, 7 | sylan2 593 | . . . . 5 β’ ((π β§ π β (π...π)) β (πΉβπ) β β) |
29 | 28 | adantlr 713 | . . . 4 β’ (((π β§ π β π) β§ π β (π...π)) β (πΉβπ) β β) |
30 | 27, 19 | sylan2 593 | . . . . 5 β’ ((π β§ π β (π...π)) β (πΊβπ) = (absβ(πΉβπ))) |
31 | 30 | adantlr 713 | . . . 4 β’ (((π β§ π β π) β§ π β (π...π)) β (πΊβπ) = (absβ(πΉβπ))) |
32 | 25, 29, 31 | seqabs 15759 | . . 3 β’ ((π β§ π β π) β (absβ(seqπ( + , πΉ)βπ)) β€ (seqπ( + , πΊ)βπ)) |
33 | 14, 32 | eqbrtrd 5170 | . 2 β’ ((π β§ π β π) β ((π β π β¦ (absβ(seqπ( + , πΉ)βπ)))βπ) β€ (seqπ( + , πΊ)βπ)) |
34 | 1, 2, 15, 16, 18, 23, 33 | climle 15583 | 1 β’ (π β (absβπ΄) β€ π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 class class class wbr 5148 β¦ cmpt 5231 βcfv 6543 (class class class)co 7408 βcc 11107 βcr 11108 + caddc 11112 β€ cle 11248 β€cz 12557 β€β₯cuz 12821 ...cfz 13483 seqcseq 13965 abscabs 15180 β cli 15427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-fl 13756 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-rlim 15432 df-sum 15632 |
This theorem is referenced by: eftlub 16051 abelthlem7 25949 |
Copyright terms: Public domain | W3C validator |