| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iserabs | Structured version Visualization version GIF version | ||
| Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 27-May-2014.) |
| Ref | Expression |
|---|---|
| iserabs.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| iserabs.2 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) |
| iserabs.3 | ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵) |
| iserabs.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| iserabs.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| iserabs.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
| Ref | Expression |
|---|---|
| iserabs | ⊢ (𝜑 → (abs‘𝐴) ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iserabs.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | iserabs.5 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | iserabs.2 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) | |
| 4 | 1 | fvexi 6831 | . . . . 5 ⊢ 𝑍 ∈ V |
| 5 | 4 | mptex 7152 | . . . 4 ⊢ (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V) |
| 7 | iserabs.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 8 | 1, 2, 7 | serf 13929 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
| 9 | 8 | ffvelcdmda 7012 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ) |
| 10 | 2fveq3 6822 | . . . . 5 ⊢ (𝑚 = 𝑛 → (abs‘(seq𝑀( + , 𝐹)‘𝑚)) = (abs‘(seq𝑀( + , 𝐹)‘𝑛))) | |
| 11 | eqid 2730 | . . . . 5 ⊢ (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) = (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) | |
| 12 | fvex 6830 | . . . . 5 ⊢ (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ V | |
| 13 | 10, 11, 12 | fvmpt 6924 | . . . 4 ⊢ (𝑛 ∈ 𝑍 → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛))) |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛))) |
| 15 | 1, 3, 6, 2, 9, 14 | climabs 15503 | . 2 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ⇝ (abs‘𝐴)) |
| 16 | iserabs.3 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵) | |
| 17 | 9 | abscld 15338 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ ℝ) |
| 18 | 14, 17 | eqeltrd 2829 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ∈ ℝ) |
| 19 | iserabs.7 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) | |
| 20 | 7 | abscld 15338 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
| 21 | 19, 20 | eqeltrd 2829 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) |
| 22 | 1, 2, 21 | serfre 13930 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ) |
| 23 | 22 | ffvelcdmda 7012 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ) |
| 24 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) | |
| 25 | 24, 1 | eleqtrdi 2839 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 26 | elfzuz 13412 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 27 | 26, 1 | eleqtrrdi 2840 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ 𝑍) |
| 28 | 27, 7 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) ∈ ℂ) |
| 29 | 28 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) ∈ ℂ) |
| 30 | 27, 19 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
| 31 | 30 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
| 32 | 25, 29, 31 | seqabs 15713 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ≤ (seq𝑀( + , 𝐺)‘𝑛)) |
| 33 | 14, 32 | eqbrtrd 5111 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ≤ (seq𝑀( + , 𝐺)‘𝑛)) |
| 34 | 1, 2, 15, 16, 18, 23, 33 | climle 15539 | 1 ⊢ (𝜑 → (abs‘𝐴) ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6477 (class class class)co 7341 ℂcc 10996 ℝcr 10997 + caddc 11001 ≤ cle 11139 ℤcz 12460 ℤ≥cuz 12724 ...cfz 13399 seqcseq 13900 abscabs 15133 ⇝ cli 15383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-fz 13400 df-fzo 13547 df-fl 13688 df-seq 13901 df-exp 13961 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-clim 15387 df-rlim 15388 df-sum 15586 |
| This theorem is referenced by: eftlub 16010 abelthlem7 26368 |
| Copyright terms: Public domain | W3C validator |