MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserabs Structured version   Visualization version   GIF version

Theorem iserabs 15707
Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
iserabs.1 𝑍 = (β„€β‰₯β€˜π‘€)
iserabs.2 (πœ‘ β†’ seq𝑀( + , 𝐹) ⇝ 𝐴)
iserabs.3 (πœ‘ β†’ seq𝑀( + , 𝐺) ⇝ 𝐡)
iserabs.5 (πœ‘ β†’ 𝑀 ∈ β„€)
iserabs.6 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
iserabs.7 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) = (absβ€˜(πΉβ€˜π‘˜)))
Assertion
Ref Expression
iserabs (πœ‘ β†’ (absβ€˜π΄) ≀ 𝐡)
Distinct variable groups:   π‘˜,𝐹   π‘˜,𝐺   π‘˜,𝑀   πœ‘,π‘˜   π‘˜,𝑍
Allowed substitution hints:   𝐴(π‘˜)   𝐡(π‘˜)

Proof of Theorem iserabs
Dummy variables π‘š 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iserabs.1 . 2 𝑍 = (β„€β‰₯β€˜π‘€)
2 iserabs.5 . 2 (πœ‘ β†’ 𝑀 ∈ β„€)
3 iserabs.2 . . 3 (πœ‘ β†’ seq𝑀( + , 𝐹) ⇝ 𝐴)
41fvexi 6861 . . . . 5 𝑍 ∈ V
54mptex 7178 . . . 4 (π‘š ∈ 𝑍 ↦ (absβ€˜(seq𝑀( + , 𝐹)β€˜π‘š))) ∈ V
65a1i 11 . . 3 (πœ‘ β†’ (π‘š ∈ 𝑍 ↦ (absβ€˜(seq𝑀( + , 𝐹)β€˜π‘š))) ∈ V)
7 iserabs.6 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
81, 2, 7serf 13943 . . . 4 (πœ‘ β†’ seq𝑀( + , 𝐹):π‘βŸΆβ„‚)
98ffvelcdmda 7040 . . 3 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (seq𝑀( + , 𝐹)β€˜π‘›) ∈ β„‚)
10 2fveq3 6852 . . . . 5 (π‘š = 𝑛 β†’ (absβ€˜(seq𝑀( + , 𝐹)β€˜π‘š)) = (absβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)))
11 eqid 2737 . . . . 5 (π‘š ∈ 𝑍 ↦ (absβ€˜(seq𝑀( + , 𝐹)β€˜π‘š))) = (π‘š ∈ 𝑍 ↦ (absβ€˜(seq𝑀( + , 𝐹)β€˜π‘š)))
12 fvex 6860 . . . . 5 (absβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) ∈ V
1310, 11, 12fvmpt 6953 . . . 4 (𝑛 ∈ 𝑍 β†’ ((π‘š ∈ 𝑍 ↦ (absβ€˜(seq𝑀( + , 𝐹)β€˜π‘š)))β€˜π‘›) = (absβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)))
1413adantl 483 . . 3 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ ((π‘š ∈ 𝑍 ↦ (absβ€˜(seq𝑀( + , 𝐹)β€˜π‘š)))β€˜π‘›) = (absβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)))
151, 3, 6, 2, 9, 14climabs 15493 . 2 (πœ‘ β†’ (π‘š ∈ 𝑍 ↦ (absβ€˜(seq𝑀( + , 𝐹)β€˜π‘š))) ⇝ (absβ€˜π΄))
16 iserabs.3 . 2 (πœ‘ β†’ seq𝑀( + , 𝐺) ⇝ 𝐡)
179abscld 15328 . . 3 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (absβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) ∈ ℝ)
1814, 17eqeltrd 2838 . 2 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ ((π‘š ∈ 𝑍 ↦ (absβ€˜(seq𝑀( + , 𝐹)β€˜π‘š)))β€˜π‘›) ∈ ℝ)
19 iserabs.7 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) = (absβ€˜(πΉβ€˜π‘˜)))
207abscld 15328 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (absβ€˜(πΉβ€˜π‘˜)) ∈ ℝ)
2119, 20eqeltrd 2838 . . . 4 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) ∈ ℝ)
221, 2, 21serfre 13944 . . 3 (πœ‘ β†’ seq𝑀( + , 𝐺):π‘βŸΆβ„)
2322ffvelcdmda 7040 . 2 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (seq𝑀( + , 𝐺)β€˜π‘›) ∈ ℝ)
24 simpr 486 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ 𝑛 ∈ 𝑍)
2524, 1eleqtrdi 2848 . . . 4 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘€))
26 elfzuz 13444 . . . . . . 7 (π‘˜ ∈ (𝑀...𝑛) β†’ π‘˜ ∈ (β„€β‰₯β€˜π‘€))
2726, 1eleqtrrdi 2849 . . . . . 6 (π‘˜ ∈ (𝑀...𝑛) β†’ π‘˜ ∈ 𝑍)
2827, 7sylan2 594 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ (𝑀...𝑛)) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
2928adantlr 714 . . . 4 (((πœ‘ ∧ 𝑛 ∈ 𝑍) ∧ π‘˜ ∈ (𝑀...𝑛)) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
3027, 19sylan2 594 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ (𝑀...𝑛)) β†’ (πΊβ€˜π‘˜) = (absβ€˜(πΉβ€˜π‘˜)))
3130adantlr 714 . . . 4 (((πœ‘ ∧ 𝑛 ∈ 𝑍) ∧ π‘˜ ∈ (𝑀...𝑛)) β†’ (πΊβ€˜π‘˜) = (absβ€˜(πΉβ€˜π‘˜)))
3225, 29, 31seqabs 15706 . . 3 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (absβ€˜(seq𝑀( + , 𝐹)β€˜π‘›)) ≀ (seq𝑀( + , 𝐺)β€˜π‘›))
3314, 32eqbrtrd 5132 . 2 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ ((π‘š ∈ 𝑍 ↦ (absβ€˜(seq𝑀( + , 𝐹)β€˜π‘š)))β€˜π‘›) ≀ (seq𝑀( + , 𝐺)β€˜π‘›))
341, 2, 15, 16, 18, 23, 33climle 15529 1 (πœ‘ β†’ (absβ€˜π΄) ≀ 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  Vcvv 3448   class class class wbr 5110   ↦ cmpt 5193  β€˜cfv 6501  (class class class)co 7362  β„‚cc 11056  β„cr 11057   + caddc 11061   ≀ cle 11197  β„€cz 12506  β„€β‰₯cuz 12770  ...cfz 13431  seqcseq 13913  abscabs 15126   ⇝ cli 15373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-inf 9386  df-oi 9453  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-fz 13432  df-fzo 13575  df-fl 13704  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-rlim 15378  df-sum 15578
This theorem is referenced by:  eftlub  15998  abelthlem7  25813
  Copyright terms: Public domain W3C validator