MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserabs Structured version   Visualization version   GIF version

Theorem iserabs 15847
Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
iserabs.1 𝑍 = (ℤ𝑀)
iserabs.2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
iserabs.3 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
iserabs.5 (𝜑𝑀 ∈ ℤ)
iserabs.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
iserabs.7 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
Assertion
Ref Expression
iserabs (𝜑 → (abs‘𝐴) ≤ 𝐵)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iserabs
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iserabs.1 . 2 𝑍 = (ℤ𝑀)
2 iserabs.5 . 2 (𝜑𝑀 ∈ ℤ)
3 iserabs.2 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
41fvexi 6920 . . . . 5 𝑍 ∈ V
54mptex 7242 . . . 4 (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V
65a1i 11 . . 3 (𝜑 → (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V)
7 iserabs.6 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
81, 2, 7serf 14067 . . . 4 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
98ffvelcdmda 7103 . . 3 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
10 2fveq3 6911 . . . . 5 (𝑚 = 𝑛 → (abs‘(seq𝑀( + , 𝐹)‘𝑚)) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
11 eqid 2734 . . . . 5 (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) = (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))
12 fvex 6919 . . . . 5 (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ V
1310, 11, 12fvmpt 7015 . . . 4 (𝑛𝑍 → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
1413adantl 481 . . 3 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
151, 3, 6, 2, 9, 14climabs 15636 . 2 (𝜑 → (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ⇝ (abs‘𝐴))
16 iserabs.3 . 2 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
179abscld 15471 . . 3 ((𝜑𝑛𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ ℝ)
1814, 17eqeltrd 2838 . 2 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ∈ ℝ)
19 iserabs.7 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
207abscld 15471 . . . . 5 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
2119, 20eqeltrd 2838 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
221, 2, 21serfre 14068 . . 3 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ)
2322ffvelcdmda 7103 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
24 simpr 484 . . . . 5 ((𝜑𝑛𝑍) → 𝑛𝑍)
2524, 1eleqtrdi 2848 . . . 4 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
26 elfzuz 13556 . . . . . . 7 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
2726, 1eleqtrrdi 2849 . . . . . 6 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
2827, 7sylan2 593 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
2928adantlr 715 . . . 4 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
3027, 19sylan2 593 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
3130adantlr 715 . . . 4 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
3225, 29, 31seqabs 15846 . . 3 ((𝜑𝑛𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ≤ (seq𝑀( + , 𝐺)‘𝑛))
3314, 32eqbrtrd 5169 . 2 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ≤ (seq𝑀( + , 𝐺)‘𝑛))
341, 2, 15, 16, 18, 23, 33climle 15672 1 (𝜑 → (abs‘𝐴) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  Vcvv 3477   class class class wbr 5147  cmpt 5230  cfv 6562  (class class class)co 7430  cc 11150  cr 11151   + caddc 11155  cle 11293  cz 12610  cuz 12875  ...cfz 13543  seqcseq 14038  abscabs 15269  cli 15516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719
This theorem is referenced by:  eftlub  16141  abelthlem7  26496
  Copyright terms: Public domain W3C validator