MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonex2e Structured version   Visualization version   GIF version

Theorem clwwlknonex2e 28474
Description: Extending a closed walk 𝑊 on vertex 𝑋 by an additional edge (forth and back) results in a closed walk on vertex 𝑋. (Contributed by AV, 17-Apr-2022.)
Hypotheses
Ref Expression
clwwlknonex2.v 𝑉 = (Vtx‘𝐺)
clwwlknonex2.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknonex2e (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁))

Proof of Theorem clwwlknonex2e
StepHypRef Expression
1 clwwlknonex2.v . . 3 𝑉 = (Vtx‘𝐺)
2 clwwlknonex2.e . . 3 𝐸 = (Edg‘𝐺)
31, 2clwwlknonex2 28473 . 2 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺))
4 isclwwlknon 28455 . . . . 5 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋))
5 isclwwlkn 28391 . . . . . . . . . 10 (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 − 2)))
61clwwlkbp 28349 . . . . . . . . . . . . 13 (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
76simp2d 1142 . . . . . . . . . . . 12 (𝑊 ∈ (ClWWalks‘𝐺) → 𝑊 ∈ Word 𝑉)
8 clwwlkgt0 28350 . . . . . . . . . . . 12 (𝑊 ∈ (ClWWalks‘𝐺) → 0 < (♯‘𝑊))
97, 8jca 512 . . . . . . . . . . 11 (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)))
109adantr 481 . . . . . . . . . 10 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)))
115, 10sylbi 216 . . . . . . . . 9 (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)))
1211ad2antrl 725 . . . . . . . 8 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)))
13 ccat2s1fst 14351 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = (𝑊‘0))
1412, 13syl 17 . . . . . . 7 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = (𝑊‘0))
15 simprr 770 . . . . . . 7 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (𝑊‘0) = 𝑋)
1614, 15eqtrd 2778 . . . . . 6 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = 𝑋)
1716ex 413 . . . . 5 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = 𝑋))
184, 17syl5bi 241 . . . 4 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = 𝑋))
1918a1d 25 . . 3 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = 𝑋)))
20193imp 1110 . 2 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = 𝑋)
21 isclwwlknon 28455 . 2 (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = 𝑋))
223, 20, 21sylanbrc 583 1 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  c0 4256  {cpr 4563   class class class wbr 5074  cfv 6433  (class class class)co 7275  0cc0 10871   < clt 11009  cmin 11205  2c2 12028  3c3 12029  cuz 12582  chash 14044  Word cword 14217   ++ cconcat 14273  ⟨“cs1 14300  Vtxcvtx 27366  Edgcedg 27417  ClWWalkscclwwlk 28345   ClWWalksN cclwwlkn 28388  ClWWalksNOncclwwlknon 28451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-clwwlk 28346  df-clwwlkn 28389  df-clwwlknon 28452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator