Step | Hyp | Ref
| Expression |
1 | | clwwlknonex2.v |
. . 3
β’ π = (VtxβπΊ) |
2 | | clwwlknonex2.e |
. . 3
β’ πΈ = (EdgβπΊ) |
3 | 1, 2 | clwwlknonex2 29351 |
. 2
β’ (((π β π β§ π β π β§ π β (β€β₯β3))
β§ {π, π} β πΈ β§ π β (π(ClWWalksNOnβπΊ)(π β 2))) β ((π ++ β¨βπββ©) ++ β¨βπββ©) β (π ClWWalksN πΊ)) |
4 | | isclwwlknon 29333 |
. . . . 5
β’ (π β (π(ClWWalksNOnβπΊ)(π β 2)) β (π β ((π β 2) ClWWalksN πΊ) β§ (πβ0) = π)) |
5 | | isclwwlkn 29269 |
. . . . . . . . . 10
β’ (π β ((π β 2) ClWWalksN πΊ) β (π β (ClWWalksβπΊ) β§ (β―βπ) = (π β 2))) |
6 | 1 | clwwlkbp 29227 |
. . . . . . . . . . . . 13
β’ (π β (ClWWalksβπΊ) β (πΊ β V β§ π β Word π β§ π β β
)) |
7 | 6 | simp2d 1143 |
. . . . . . . . . . . 12
β’ (π β (ClWWalksβπΊ) β π β Word π) |
8 | | clwwlkgt0 29228 |
. . . . . . . . . . . 12
β’ (π β (ClWWalksβπΊ) β 0 <
(β―βπ)) |
9 | 7, 8 | jca 512 |
. . . . . . . . . . 11
β’ (π β (ClWWalksβπΊ) β (π β Word π β§ 0 < (β―βπ))) |
10 | 9 | adantr 481 |
. . . . . . . . . 10
β’ ((π β (ClWWalksβπΊ) β§ (β―βπ) = (π β 2)) β (π β Word π β§ 0 < (β―βπ))) |
11 | 5, 10 | sylbi 216 |
. . . . . . . . 9
β’ (π β ((π β 2) ClWWalksN πΊ) β (π β Word π β§ 0 < (β―βπ))) |
12 | 11 | ad2antrl 726 |
. . . . . . . 8
β’ (((π β π β§ π β π β§ π β (β€β₯β3))
β§ (π β ((π β 2) ClWWalksN πΊ) β§ (πβ0) = π)) β (π β Word π β§ 0 < (β―βπ))) |
13 | | ccat2s1fst 14585 |
. . . . . . . 8
β’ ((π β Word π β§ 0 < (β―βπ)) β (((π ++ β¨βπββ©) ++ β¨βπββ©)β0) = (πβ0)) |
14 | 12, 13 | syl 17 |
. . . . . . 7
β’ (((π β π β§ π β π β§ π β (β€β₯β3))
β§ (π β ((π β 2) ClWWalksN πΊ) β§ (πβ0) = π)) β (((π ++ β¨βπββ©) ++ β¨βπββ©)β0) = (πβ0)) |
15 | | simprr 771 |
. . . . . . 7
β’ (((π β π β§ π β π β§ π β (β€β₯β3))
β§ (π β ((π β 2) ClWWalksN πΊ) β§ (πβ0) = π)) β (πβ0) = π) |
16 | 14, 15 | eqtrd 2772 |
. . . . . 6
β’ (((π β π β§ π β π β§ π β (β€β₯β3))
β§ (π β ((π β 2) ClWWalksN πΊ) β§ (πβ0) = π)) β (((π ++ β¨βπββ©) ++ β¨βπββ©)β0) = π) |
17 | 16 | ex 413 |
. . . . 5
β’ ((π β π β§ π β π β§ π β (β€β₯β3))
β ((π β ((π β 2) ClWWalksN πΊ) β§ (πβ0) = π) β (((π ++ β¨βπββ©) ++ β¨βπββ©)β0) = π)) |
18 | 4, 17 | biimtrid 241 |
. . . 4
β’ ((π β π β§ π β π β§ π β (β€β₯β3))
β (π β (π(ClWWalksNOnβπΊ)(π β 2)) β (((π ++ β¨βπββ©) ++ β¨βπββ©)β0) = π)) |
19 | 18 | a1d 25 |
. . 3
β’ ((π β π β§ π β π β§ π β (β€β₯β3))
β ({π, π} β πΈ β (π β (π(ClWWalksNOnβπΊ)(π β 2)) β (((π ++ β¨βπββ©) ++ β¨βπββ©)β0) = π))) |
20 | 19 | 3imp 1111 |
. 2
β’ (((π β π β§ π β π β§ π β (β€β₯β3))
β§ {π, π} β πΈ β§ π β (π(ClWWalksNOnβπΊ)(π β 2))) β (((π ++ β¨βπββ©) ++ β¨βπββ©)β0) = π) |
21 | | isclwwlknon 29333 |
. 2
β’ (((π ++ β¨βπββ©) ++
β¨βπββ©) β (π(ClWWalksNOnβπΊ)π) β (((π ++ β¨βπββ©) ++ β¨βπββ©) β (π ClWWalksN πΊ) β§ (((π ++ β¨βπββ©) ++ β¨βπββ©)β0) = π)) |
22 | 3, 20, 21 | sylanbrc 583 |
1
β’ (((π β π β§ π β π β§ π β (β€β₯β3))
β§ {π, π} β πΈ β§ π β (π(ClWWalksNOnβπΊ)(π β 2))) β ((π ++ β¨βπββ©) ++ β¨βπββ©) β (π(ClWWalksNOnβπΊ)π)) |