MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonex2e Structured version   Visualization version   GIF version

Theorem clwwlknonex2e 30139
Description: Extending a closed walk 𝑊 on vertex 𝑋 by an additional edge (forth and back) results in a closed walk on vertex 𝑋. (Contributed by AV, 17-Apr-2022.)
Hypotheses
Ref Expression
clwwlknonex2.v 𝑉 = (Vtx‘𝐺)
clwwlknonex2.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknonex2e (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁))

Proof of Theorem clwwlknonex2e
StepHypRef Expression
1 clwwlknonex2.v . . 3 𝑉 = (Vtx‘𝐺)
2 clwwlknonex2.e . . 3 𝐸 = (Edg‘𝐺)
31, 2clwwlknonex2 30138 . 2 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺))
4 isclwwlknon 30120 . . . . 5 (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋))
5 isclwwlkn 30056 . . . . . . . . . 10 (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 − 2)))
61clwwlkbp 30014 . . . . . . . . . . . . 13 (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
76simp2d 1142 . . . . . . . . . . . 12 (𝑊 ∈ (ClWWalks‘𝐺) → 𝑊 ∈ Word 𝑉)
8 clwwlkgt0 30015 . . . . . . . . . . . 12 (𝑊 ∈ (ClWWalks‘𝐺) → 0 < (♯‘𝑊))
97, 8jca 511 . . . . . . . . . . 11 (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)))
109adantr 480 . . . . . . . . . 10 ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)))
115, 10sylbi 217 . . . . . . . . 9 (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)))
1211ad2antrl 728 . . . . . . . 8 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)))
13 ccat2s1fst 14674 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = (𝑊‘0))
1412, 13syl 17 . . . . . . 7 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = (𝑊‘0))
15 simprr 773 . . . . . . 7 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (𝑊‘0) = 𝑋)
1614, 15eqtrd 2775 . . . . . 6 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = 𝑋)
1716ex 412 . . . . 5 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ((𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = 𝑋))
184, 17biimtrid 242 . . . 4 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = 𝑋))
1918a1d 25 . . 3 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = 𝑋)))
20193imp 1110 . 2 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = 𝑋)
21 isclwwlknon 30120 . 2 (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ∧ (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = 𝑋))
223, 20, 21sylanbrc 583 1 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  c0 4339  {cpr 4633   class class class wbr 5148  cfv 6563  (class class class)co 7431  0cc0 11153   < clt 11293  cmin 11490  2c2 12319  3c3 12320  cuz 12876  chash 14366  Word cword 14549   ++ cconcat 14605  ⟨“cs1 14630  Vtxcvtx 29028  Edgcedg 29079  ClWWalkscclwwlk 30010   ClWWalksN cclwwlkn 30053  ClWWalksNOncclwwlknon 30116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-clwwlk 30011  df-clwwlkn 30054  df-clwwlknon 30117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator