![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknonex2e | Structured version Visualization version GIF version |
Description: Extending a closed walk 𝑊 on vertex 𝑋 by an additional edge (forth and back) results in a closed walk on vertex 𝑋. (Contributed by AV, 17-Apr-2022.) |
Ref | Expression |
---|---|
clwwlknonex2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
clwwlknonex2.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
clwwlknonex2e | ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknonex2.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | clwwlknonex2.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | clwwlknonex2 27511 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑁 ClWWalksN 𝐺)) |
4 | isclwwlknon 27493 | . . . . 5 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) | |
5 | isclwwlkn 27416 | . . . . . . . . . 10 ⊢ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 − 2))) | |
6 | 1 | clwwlkbp 27365 | . . . . . . . . . . . . 13 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅)) |
7 | 6 | simp2d 1134 | . . . . . . . . . . . 12 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → 𝑊 ∈ Word 𝑉) |
8 | clwwlkgt0 27366 | . . . . . . . . . . . 12 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → 0 < (♯‘𝑊)) | |
9 | 7, 8 | jca 507 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊))) |
10 | 9 | adantr 474 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊))) |
11 | 5, 10 | sylbi 209 | . . . . . . . . 9 ⊢ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊))) |
12 | 11 | adantr 474 | . . . . . . . 8 ⊢ ((𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊))) |
13 | 3simpa 1139 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) | |
14 | ccat2s1fst 13729 | . . . . . . . 8 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = (𝑊‘0)) | |
15 | 12, 13, 14 | syl2anr 590 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = (𝑊‘0)) |
16 | simprr 763 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (𝑊‘0) = 𝑋) | |
17 | 15, 16 | eqtrd 2814 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋) |
18 | 17 | ex 403 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋)) |
19 | 4, 18 | syl5bi 234 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋)) |
20 | 19 | a1d 25 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋))) |
21 | 20 | 3imp 1098 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋) |
22 | isclwwlknon 27493 | . 2 ⊢ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑁 ClWWalksN 𝐺) ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋)) | |
23 | 3, 21, 22 | sylanbrc 578 | 1 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 Vcvv 3398 ∅c0 4141 {cpr 4400 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 0cc0 10272 < clt 10411 − cmin 10606 2c2 11430 3c3 11431 ℤ≥cuz 11992 ♯chash 13435 Word cword 13599 ++ cconcat 13660 〈“cs1 13685 Vtxcvtx 26344 Edgcedg 26395 ClWWalkscclwwlk 27361 ClWWalksN cclwwlkn 27413 ClWWalksNOncclwwlknon 27489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-xnn0 11715 df-z 11729 df-uz 11993 df-rp 12138 df-fz 12644 df-fzo 12785 df-hash 13436 df-word 13600 df-lsw 13653 df-concat 13661 df-s1 13686 df-clwwlk 27362 df-clwwlkn 27414 df-clwwlknon 27490 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |