Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clwwlknonex2e | Structured version Visualization version GIF version |
Description: Extending a closed walk 𝑊 on vertex 𝑋 by an additional edge (forth and back) results in a closed walk on vertex 𝑋. (Contributed by AV, 17-Apr-2022.) |
Ref | Expression |
---|---|
clwwlknonex2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
clwwlknonex2.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
clwwlknonex2e | ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknonex2.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | clwwlknonex2.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | 1, 2 | clwwlknonex2 28761 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑁 ClWWalksN 𝐺)) |
4 | isclwwlknon 28743 | . . . . 5 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) | |
5 | isclwwlkn 28679 | . . . . . . . . . 10 ⊢ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 − 2))) | |
6 | 1 | clwwlkbp 28637 | . . . . . . . . . . . . 13 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅)) |
7 | 6 | simp2d 1143 | . . . . . . . . . . . 12 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → 𝑊 ∈ Word 𝑉) |
8 | clwwlkgt0 28638 | . . . . . . . . . . . 12 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → 0 < (♯‘𝑊)) | |
9 | 7, 8 | jca 513 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊))) |
10 | 9 | adantr 482 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊))) |
11 | 5, 10 | sylbi 216 | . . . . . . . . 9 ⊢ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊))) |
12 | 11 | ad2antrl 726 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊))) |
13 | ccat2s1fst 14450 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = (𝑊‘0)) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = (𝑊‘0)) |
15 | simprr 771 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (𝑊‘0) = 𝑋) | |
16 | 14, 15 | eqtrd 2777 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋) |
17 | 16 | ex 414 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋)) |
18 | 4, 17 | biimtrid 241 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋)) |
19 | 18 | a1d 25 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋))) |
20 | 19 | 3imp 1111 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋) |
21 | isclwwlknon 28743 | . 2 ⊢ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑁 ClWWalksN 𝐺) ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋)) | |
22 | 3, 20, 21 | sylanbrc 584 | 1 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 Vcvv 3442 ∅c0 4274 {cpr 4580 class class class wbr 5097 ‘cfv 6484 (class class class)co 7342 0cc0 10977 < clt 11115 − cmin 11311 2c2 12134 3c3 12135 ℤ≥cuz 12688 ♯chash 14150 Word cword 14322 ++ cconcat 14378 〈“cs1 14403 Vtxcvtx 27655 Edgcedg 27706 ClWWalkscclwwlk 28633 ClWWalksN cclwwlkn 28676 ClWWalksNOncclwwlknon 28739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-oadd 8376 df-er 8574 df-map 8693 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-3 12143 df-n0 12340 df-xnn0 12412 df-z 12426 df-uz 12689 df-rp 12837 df-fz 13346 df-fzo 13489 df-hash 14151 df-word 14323 df-lsw 14371 df-concat 14379 df-s1 14404 df-clwwlk 28634 df-clwwlkn 28677 df-clwwlknon 28740 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |