| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlknonex2e | Structured version Visualization version GIF version | ||
| Description: Extending a closed walk 𝑊 on vertex 𝑋 by an additional edge (forth and back) results in a closed walk on vertex 𝑋. (Contributed by AV, 17-Apr-2022.) |
| Ref | Expression |
|---|---|
| clwwlknonex2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| clwwlknonex2.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| clwwlknonex2e | ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlknonex2.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | clwwlknonex2.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | 1, 2 | clwwlknonex2 30038 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑁 ClWWalksN 𝐺)) |
| 4 | isclwwlknon 30020 | . . . . 5 ⊢ (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) | |
| 5 | isclwwlkn 29956 | . . . . . . . . . 10 ⊢ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ↔ (𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 − 2))) | |
| 6 | 1 | clwwlkbp 29914 | . . . . . . . . . . . . 13 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅)) |
| 7 | 6 | simp2d 1143 | . . . . . . . . . . . 12 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → 𝑊 ∈ Word 𝑉) |
| 8 | clwwlkgt0 29915 | . . . . . . . . . . . 12 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → 0 < (♯‘𝑊)) | |
| 9 | 7, 8 | jca 511 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊))) |
| 10 | 9 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊))) |
| 11 | 5, 10 | sylbi 217 | . . . . . . . . 9 ⊢ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊))) |
| 12 | 11 | ad2antrl 728 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊))) |
| 13 | ccat2s1fst 14604 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = (𝑊‘0)) | |
| 14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = (𝑊‘0)) |
| 15 | simprr 772 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (𝑊‘0) = 𝑋) | |
| 16 | 14, 15 | eqtrd 2764 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ (𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋) |
| 17 | 16 | ex 412 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑊 ∈ ((𝑁 − 2) ClWWalksN 𝐺) ∧ (𝑊‘0) = 𝑋) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋)) |
| 18 | 4, 17 | biimtrid 242 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋)) |
| 19 | 18 | a1d 25 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋))) |
| 20 | 19 | 3imp 1110 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋) |
| 21 | isclwwlknon 30020 | . 2 ⊢ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑁 ClWWalksN 𝐺) ∧ (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘0) = 𝑋)) | |
| 22 | 3, 20, 21 | sylanbrc 583 | 1 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸 ∧ 𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∅c0 4296 {cpr 4591 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 0cc0 11068 < clt 11208 − cmin 11405 2c2 12241 3c3 12242 ℤ≥cuz 12793 ♯chash 14295 Word cword 14478 ++ cconcat 14535 〈“cs1 14560 Vtxcvtx 28923 Edgcedg 28974 ClWWalkscclwwlk 29910 ClWWalksN cclwwlkn 29953 ClWWalksNOncclwwlknon 30016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-lsw 14528 df-concat 14536 df-s1 14561 df-clwwlk 29911 df-clwwlkn 29954 df-clwwlknon 30017 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |