![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decrmac | Structured version Visualization version GIF version |
Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by AV, 16-Sep-2021.) |
Ref | Expression |
---|---|
decrmanc.a | ⊢ 𝐴 ∈ ℕ0 |
decrmanc.b | ⊢ 𝐵 ∈ ℕ0 |
decrmanc.n | ⊢ 𝑁 ∈ ℕ0 |
decrmanc.m | ⊢ 𝑀 = ;𝐴𝐵 |
decrmanc.p | ⊢ 𝑃 ∈ ℕ0 |
decrmac.f | ⊢ 𝐹 ∈ ℕ0 |
decrmac.g | ⊢ 𝐺 ∈ ℕ0 |
decrmac.e | ⊢ ((𝐴 · 𝑃) + 𝐺) = 𝐸 |
decrmac.2 | ⊢ ((𝐵 · 𝑃) + 𝑁) = ;𝐺𝐹 |
Ref | Expression |
---|---|
decrmac | ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decrmanc.a | . 2 ⊢ 𝐴 ∈ ℕ0 | |
2 | decrmanc.b | . 2 ⊢ 𝐵 ∈ ℕ0 | |
3 | 0nn0 12568 | . 2 ⊢ 0 ∈ ℕ0 | |
4 | decrmanc.n | . 2 ⊢ 𝑁 ∈ ℕ0 | |
5 | decrmanc.m | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
6 | 4 | dec0h 12780 | . 2 ⊢ 𝑁 = ;0𝑁 |
7 | decrmanc.p | . 2 ⊢ 𝑃 ∈ ℕ0 | |
8 | decrmac.f | . 2 ⊢ 𝐹 ∈ ℕ0 | |
9 | decrmac.g | . 2 ⊢ 𝐺 ∈ ℕ0 | |
10 | 9 | nn0cni 12565 | . . . . 5 ⊢ 𝐺 ∈ ℂ |
11 | 10 | addlidi 11478 | . . . 4 ⊢ (0 + 𝐺) = 𝐺 |
12 | 11 | oveq2i 7459 | . . 3 ⊢ ((𝐴 · 𝑃) + (0 + 𝐺)) = ((𝐴 · 𝑃) + 𝐺) |
13 | decrmac.e | . . 3 ⊢ ((𝐴 · 𝑃) + 𝐺) = 𝐸 | |
14 | 12, 13 | eqtri 2768 | . 2 ⊢ ((𝐴 · 𝑃) + (0 + 𝐺)) = 𝐸 |
15 | decrmac.2 | . 2 ⊢ ((𝐵 · 𝑃) + 𝑁) = ;𝐺𝐹 | |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15 | decmac 12810 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 0cc0 11184 + caddc 11187 · cmul 11189 ℕ0cn0 12553 ;cdc 12758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-dec 12759 |
This theorem is referenced by: 2exp16 17138 139prm 17171 163prm 17172 1259lem1 17178 1259lem3 17180 1259lem4 17181 2503lem1 17184 2503lem2 17185 4001lem1 17188 4001lem3 17190 4001prm 17192 log2ub 27010 139prmALT 47470 127prm 47473 |
Copyright terms: Public domain | W3C validator |