![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decrmac | Structured version Visualization version GIF version |
Description: Perform a multiply-add of two numerals ๐ and ๐ against a fixed multiplicand ๐ (with carry). (Contributed by AV, 16-Sep-2021.) |
Ref | Expression |
---|---|
decrmanc.a | โข ๐ด โ โ0 |
decrmanc.b | โข ๐ต โ โ0 |
decrmanc.n | โข ๐ โ โ0 |
decrmanc.m | โข ๐ = ;๐ด๐ต |
decrmanc.p | โข ๐ โ โ0 |
decrmac.f | โข ๐น โ โ0 |
decrmac.g | โข ๐บ โ โ0 |
decrmac.e | โข ((๐ด ยท ๐) + ๐บ) = ๐ธ |
decrmac.2 | โข ((๐ต ยท ๐) + ๐) = ;๐บ๐น |
Ref | Expression |
---|---|
decrmac | โข ((๐ ยท ๐) + ๐) = ;๐ธ๐น |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decrmanc.a | . 2 โข ๐ด โ โ0 | |
2 | decrmanc.b | . 2 โข ๐ต โ โ0 | |
3 | 0nn0 12488 | . 2 โข 0 โ โ0 | |
4 | decrmanc.n | . 2 โข ๐ โ โ0 | |
5 | decrmanc.m | . 2 โข ๐ = ;๐ด๐ต | |
6 | 4 | dec0h 12700 | . 2 โข ๐ = ;0๐ |
7 | decrmanc.p | . 2 โข ๐ โ โ0 | |
8 | decrmac.f | . 2 โข ๐น โ โ0 | |
9 | decrmac.g | . 2 โข ๐บ โ โ0 | |
10 | 9 | nn0cni 12485 | . . . . 5 โข ๐บ โ โ |
11 | 10 | addlidi 11403 | . . . 4 โข (0 + ๐บ) = ๐บ |
12 | 11 | oveq2i 7415 | . . 3 โข ((๐ด ยท ๐) + (0 + ๐บ)) = ((๐ด ยท ๐) + ๐บ) |
13 | decrmac.e | . . 3 โข ((๐ด ยท ๐) + ๐บ) = ๐ธ | |
14 | 12, 13 | eqtri 2754 | . 2 โข ((๐ด ยท ๐) + (0 + ๐บ)) = ๐ธ |
15 | decrmac.2 | . 2 โข ((๐ต ยท ๐) + ๐) = ;๐บ๐น | |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15 | decmac 12730 | 1 โข ((๐ ยท ๐) + ๐) = ;๐ธ๐น |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 โ wcel 2098 (class class class)co 7404 0cc0 11109 + caddc 11112 ยท cmul 11114 โ0cn0 12473 ;cdc 12678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-ltxr 11254 df-sub 11447 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-dec 12679 |
This theorem is referenced by: 2exp16 17030 139prm 17063 163prm 17064 1259lem1 17070 1259lem3 17072 1259lem4 17073 2503lem1 17076 2503lem2 17077 4001lem1 17080 4001lem3 17082 4001prm 17084 log2ub 26831 139prmALT 46818 127prm 46821 |
Copyright terms: Public domain | W3C validator |