| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decrmac | Structured version Visualization version GIF version | ||
| Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by AV, 16-Sep-2021.) |
| Ref | Expression |
|---|---|
| decrmanc.a | ⊢ 𝐴 ∈ ℕ0 |
| decrmanc.b | ⊢ 𝐵 ∈ ℕ0 |
| decrmanc.n | ⊢ 𝑁 ∈ ℕ0 |
| decrmanc.m | ⊢ 𝑀 = ;𝐴𝐵 |
| decrmanc.p | ⊢ 𝑃 ∈ ℕ0 |
| decrmac.f | ⊢ 𝐹 ∈ ℕ0 |
| decrmac.g | ⊢ 𝐺 ∈ ℕ0 |
| decrmac.e | ⊢ ((𝐴 · 𝑃) + 𝐺) = 𝐸 |
| decrmac.2 | ⊢ ((𝐵 · 𝑃) + 𝑁) = ;𝐺𝐹 |
| Ref | Expression |
|---|---|
| decrmac | ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decrmanc.a | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decrmanc.b | . 2 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 0nn0 12521 | . 2 ⊢ 0 ∈ ℕ0 | |
| 4 | decrmanc.n | . 2 ⊢ 𝑁 ∈ ℕ0 | |
| 5 | decrmanc.m | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
| 6 | 4 | dec0h 12735 | . 2 ⊢ 𝑁 = ;0𝑁 |
| 7 | decrmanc.p | . 2 ⊢ 𝑃 ∈ ℕ0 | |
| 8 | decrmac.f | . 2 ⊢ 𝐹 ∈ ℕ0 | |
| 9 | decrmac.g | . 2 ⊢ 𝐺 ∈ ℕ0 | |
| 10 | 9 | nn0cni 12518 | . . . . 5 ⊢ 𝐺 ∈ ℂ |
| 11 | 10 | addlidi 11428 | . . . 4 ⊢ (0 + 𝐺) = 𝐺 |
| 12 | 11 | oveq2i 7421 | . . 3 ⊢ ((𝐴 · 𝑃) + (0 + 𝐺)) = ((𝐴 · 𝑃) + 𝐺) |
| 13 | decrmac.e | . . 3 ⊢ ((𝐴 · 𝑃) + 𝐺) = 𝐸 | |
| 14 | 12, 13 | eqtri 2759 | . 2 ⊢ ((𝐴 · 𝑃) + (0 + 𝐺)) = 𝐸 |
| 15 | decrmac.2 | . 2 ⊢ ((𝐵 · 𝑃) + 𝑁) = ;𝐺𝐹 | |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15 | decmac 12765 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7410 0cc0 11134 + caddc 11137 · cmul 11139 ℕ0cn0 12506 ;cdc 12713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-dec 12714 |
| This theorem is referenced by: 2exp16 17115 139prm 17148 163prm 17149 1259lem1 17155 1259lem3 17157 1259lem4 17158 2503lem1 17161 2503lem2 17162 4001lem1 17165 4001lem3 17167 4001prm 17169 log2ub 26916 139prmALT 47577 127prm 47580 |
| Copyright terms: Public domain | W3C validator |