MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decrmac Structured version   Visualization version   GIF version

Theorem decrmac 12005
Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by AV, 16-Sep-2021.)
Hypotheses
Ref Expression
decrmanc.a 𝐴 ∈ ℕ0
decrmanc.b 𝐵 ∈ ℕ0
decrmanc.n 𝑁 ∈ ℕ0
decrmanc.m 𝑀 = 𝐴𝐵
decrmanc.p 𝑃 ∈ ℕ0
decrmac.f 𝐹 ∈ ℕ0
decrmac.g 𝐺 ∈ ℕ0
decrmac.e ((𝐴 · 𝑃) + 𝐺) = 𝐸
decrmac.2 ((𝐵 · 𝑃) + 𝑁) = 𝐺𝐹
Assertion
Ref Expression
decrmac ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹

Proof of Theorem decrmac
StepHypRef Expression
1 decrmanc.a . 2 𝐴 ∈ ℕ0
2 decrmanc.b . 2 𝐵 ∈ ℕ0
3 0nn0 11760 . 2 0 ∈ ℕ0
4 decrmanc.n . 2 𝑁 ∈ ℕ0
5 decrmanc.m . 2 𝑀 = 𝐴𝐵
64dec0h 11969 . 2 𝑁 = 0𝑁
7 decrmanc.p . 2 𝑃 ∈ ℕ0
8 decrmac.f . 2 𝐹 ∈ ℕ0
9 decrmac.g . 2 𝐺 ∈ ℕ0
109nn0cni 11757 . . . . 5 𝐺 ∈ ℂ
1110addid2i 10675 . . . 4 (0 + 𝐺) = 𝐺
1211oveq2i 7027 . . 3 ((𝐴 · 𝑃) + (0 + 𝐺)) = ((𝐴 · 𝑃) + 𝐺)
13 decrmac.e . . 3 ((𝐴 · 𝑃) + 𝐺) = 𝐸
1412, 13eqtri 2819 . 2 ((𝐴 · 𝑃) + (0 + 𝐺)) = 𝐸
15 decrmac.2 . 2 ((𝐵 · 𝑃) + 𝑁) = 𝐺𝐹
161, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15decmac 11999 1 ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
Colors of variables: wff setvar class
Syntax hints:   = wceq 1522  wcel 2081  (class class class)co 7016  0cc0 10383   + caddc 10386   · cmul 10388  0cn0 11745  cdc 11947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-ltxr 10526  df-sub 10719  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-dec 11948
This theorem is referenced by:  2exp16  16253  139prm  16286  163prm  16287  1259lem1  16293  1259lem3  16295  1259lem4  16296  2503lem1  16299  2503lem2  16300  4001lem1  16303  4001lem3  16305  4001prm  16307  log2ub  25209  139prmALT  43261  127prm  43265
  Copyright terms: Public domain W3C validator