![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltexp2a | Structured version Visualization version GIF version |
Description: Exponent ordering relationship for exponentiation of a fixed real base greater than 1 to integer exponents. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
ltexp2a | ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → (𝐴↑𝑀) < (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1191 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → 𝐴 ∈ ℝ) | |
2 | 0red 11293 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → 0 ∈ ℝ) | |
3 | 1red 11291 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → 1 ∈ ℝ) | |
4 | 0lt1 11812 | . . . . . . . . 9 ⊢ 0 < 1 | |
5 | 4 | a1i 11 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → 0 < 1) |
6 | simprl 770 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → 1 < 𝐴) | |
7 | 2, 3, 1, 5, 6 | lttrd 11451 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → 0 < 𝐴) |
8 | 1, 7 | elrpd 13096 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → 𝐴 ∈ ℝ+) |
9 | simpl2 1192 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → 𝑀 ∈ ℤ) | |
10 | rpexpcl 14131 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑀 ∈ ℤ) → (𝐴↑𝑀) ∈ ℝ+) | |
11 | 8, 9, 10 | syl2anc 583 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → (𝐴↑𝑀) ∈ ℝ+) |
12 | 11 | rpred 13099 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → (𝐴↑𝑀) ∈ ℝ) |
13 | 12 | recnd 11318 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → (𝐴↑𝑀) ∈ ℂ) |
14 | 13 | mullidd 11308 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → (1 · (𝐴↑𝑀)) = (𝐴↑𝑀)) |
15 | simprr 772 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → 𝑀 < 𝑁) | |
16 | simpl3 1193 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → 𝑁 ∈ ℤ) | |
17 | znnsub 12689 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) | |
18 | 9, 16, 17 | syl2anc 583 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) |
19 | 15, 18 | mpbid 232 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → (𝑁 − 𝑀) ∈ ℕ) |
20 | expgt1 14151 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (𝑁 − 𝑀) ∈ ℕ ∧ 1 < 𝐴) → 1 < (𝐴↑(𝑁 − 𝑀))) | |
21 | 1, 19, 6, 20 | syl3anc 1371 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → 1 < (𝐴↑(𝑁 − 𝑀))) |
22 | 1 | recnd 11318 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → 𝐴 ∈ ℂ) |
23 | 7 | gt0ne0d 11854 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → 𝐴 ≠ 0) |
24 | expsub 14161 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐴↑(𝑁 − 𝑀)) = ((𝐴↑𝑁) / (𝐴↑𝑀))) | |
25 | 22, 23, 16, 9, 24 | syl22anc 838 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → (𝐴↑(𝑁 − 𝑀)) = ((𝐴↑𝑁) / (𝐴↑𝑀))) |
26 | 21, 25 | breqtrd 5192 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → 1 < ((𝐴↑𝑁) / (𝐴↑𝑀))) |
27 | rpexpcl 14131 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) | |
28 | 8, 16, 27 | syl2anc 583 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → (𝐴↑𝑁) ∈ ℝ+) |
29 | 28 | rpred 13099 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → (𝐴↑𝑁) ∈ ℝ) |
30 | 3, 29, 11 | ltmuldivd 13146 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → ((1 · (𝐴↑𝑀)) < (𝐴↑𝑁) ↔ 1 < ((𝐴↑𝑁) / (𝐴↑𝑀)))) |
31 | 26, 30 | mpbird 257 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → (1 · (𝐴↑𝑀)) < (𝐴↑𝑁)) |
32 | 14, 31 | eqbrtrrd 5190 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 < 𝐴 ∧ 𝑀 < 𝑁)) → (𝐴↑𝑀) < (𝐴↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 · cmul 11189 < clt 11324 − cmin 11520 / cdiv 11947 ℕcn 12293 ℤcz 12639 ℝ+crp 13057 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 |
This theorem is referenced by: expcan 14219 ltexp2 14220 expnass 14257 perfectlem2 27292 2sqblem 27493 hgt750lemd 34625 hgt750lem 34628 2pwp1prm 47463 perfectALTVlem2 47596 tgblthelfgott 47689 tgoldbach 47691 expnegico01 48247 |
Copyright terms: Public domain | W3C validator |