| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. 2
⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) |
| 2 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
| 3 | 2 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑦) = (𝐹‘𝑥) ↔ (𝐹‘𝑦) = (𝐹‘𝑧))) |
| 4 | | breq2 5147 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑦 < 𝑥 ↔ 𝑦 < 𝑧)) |
| 5 | 3, 4 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥) ↔ ((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦 < 𝑧))) |
| 6 | | fveqeq2 6915 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ (𝐹‘𝑤) = (𝐹‘𝑧))) |
| 7 | | breq1 5146 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝑦 < 𝑧 ↔ 𝑤 < 𝑧)) |
| 8 | 6, 7 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (((𝐹‘𝑦) = (𝐹‘𝑧) ∧ 𝑦 < 𝑧) ↔ ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤 < 𝑧))) |
| 9 | 5, 8 | cbvrex2vw 3242 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥) ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤 < 𝑧)) |
| 10 | 9 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥) ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤 < 𝑧))) |
| 11 | 10 | biimpd 229 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥) → ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤 < 𝑧))) |
| 12 | 11 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥)) → ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤 < 𝑧)) |
| 13 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝐹‘𝑧) = (𝐹‘𝑦)) |
| 14 | 13 | eqeq2d 2748 |
. . . . . 6
⊢ (𝑧 = 𝑦 → ((𝐹‘𝑤) = (𝐹‘𝑧) ↔ (𝐹‘𝑤) = (𝐹‘𝑦))) |
| 15 | | breq2 5147 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (𝑤 < 𝑧 ↔ 𝑤 < 𝑦)) |
| 16 | 14, 15 | anbi12d 632 |
. . . . 5
⊢ (𝑧 = 𝑦 → (((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤 < 𝑧) ↔ ((𝐹‘𝑤) = (𝐹‘𝑦) ∧ 𝑤 < 𝑦))) |
| 17 | | fveqeq2 6915 |
. . . . . 6
⊢ (𝑤 = 𝑥 → ((𝐹‘𝑤) = (𝐹‘𝑦) ↔ (𝐹‘𝑥) = (𝐹‘𝑦))) |
| 18 | | breq1 5146 |
. . . . . 6
⊢ (𝑤 = 𝑥 → (𝑤 < 𝑦 ↔ 𝑥 < 𝑦)) |
| 19 | 17, 18 | anbi12d 632 |
. . . . 5
⊢ (𝑤 = 𝑥 → (((𝐹‘𝑤) = (𝐹‘𝑦) ∧ 𝑤 < 𝑦) ↔ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦))) |
| 20 | 16, 19 | cbvrex2vw 3242 |
. . . 4
⊢
(∃𝑧 ∈
𝐴 ∃𝑤 ∈ 𝐴 ((𝐹‘𝑤) = (𝐹‘𝑧) ∧ 𝑤 < 𝑧) ↔ ∃𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) |
| 21 | 12, 20 | sylib 218 |
. . 3
⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥)) → ∃𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) |
| 22 | | rexcom 3290 |
. . 3
⊢
(∃𝑦 ∈
𝐴 ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) |
| 23 | 21, 22 | sylib 218 |
. 2
⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) |
| 24 | | hashnexinjle.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 25 | | hashnexinjle.2 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 26 | | hashnexinjle.3 |
. . . 4
⊢ (𝜑 → (♯‘𝐵) < (♯‘𝐴)) |
| 27 | | hashnexinjle.4 |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 28 | 24, 25, 26, 27 | hashnexinj 42129 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) |
| 29 | | simplrl 777 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) ∧ 𝑥 < 𝑦) → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 30 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦) |
| 31 | 29, 30 | jca 511 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) ∧ 𝑥 < 𝑦) → ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) |
| 32 | 31 | orcd 874 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) ∧ 𝑥 < 𝑦) → (((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥))) |
| 33 | | simplrl 777 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) ∧ 𝑦 < 𝑥) → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 34 | 33 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) ∧ 𝑦 < 𝑥) → (𝐹‘𝑦) = (𝐹‘𝑥)) |
| 35 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥) |
| 36 | 34, 35 | jca 511 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) ∧ 𝑦 < 𝑥) → ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥)) |
| 37 | 36 | olcd 875 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) ∧ 𝑦 < 𝑥) → (((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥))) |
| 38 | | simprr 773 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) |
| 39 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝜑) |
| 40 | | simprl 771 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ 𝐴) |
| 41 | 39, 40 | jca 511 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝜑 ∧ 𝑥 ∈ 𝐴)) |
| 42 | | hashnexinjle.5 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 43 | 42 | sselda 3983 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 44 | 41, 43 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ℝ) |
| 45 | 44 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ ℝ) |
| 46 | | simprr 773 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ 𝐴) |
| 47 | 39, 46 | jca 511 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝜑 ∧ 𝑦 ∈ 𝐴)) |
| 48 | 42 | sselda 3983 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ ℝ) |
| 50 | 49 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ ℝ) |
| 51 | 45, 50 | lttri2d 11400 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) → (𝑥 ≠ 𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))) |
| 52 | 38, 51 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) → (𝑥 < 𝑦 ∨ 𝑦 < 𝑥)) |
| 53 | 32, 37, 52 | mpjaodan 961 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) → (((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥))) |
| 54 | 53 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦) → (((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥)))) |
| 55 | 54 | reximdvva 3207 |
. . . . . . 7
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥)))) |
| 56 | 55 | imp 406 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥))) |
| 57 | | r19.43 3122 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝐴 (((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥)) ↔ (∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑦 ∈ 𝐴 ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥))) |
| 58 | 57 | rexbii 3094 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 (((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥)) ↔ ∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑦 ∈ 𝐴 ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥))) |
| 59 | 56, 58 | sylib 218 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) → ∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑦 ∈ 𝐴 ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥))) |
| 60 | | r19.43 3122 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 (∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑦 ∈ 𝐴 ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥)) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥))) |
| 61 | 59, 60 | sylib 218 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦)) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥))) |
| 62 | 61 | ex 412 |
. . 3
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 ≠ 𝑦) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥)))) |
| 63 | 28, 62 | mpd 15 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑦) = (𝐹‘𝑥) ∧ 𝑦 < 𝑥))) |
| 64 | 1, 23, 63 | mpjaodan 961 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) |