Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashnexinjle Structured version   Visualization version   GIF version

Theorem hashnexinjle 41632
Description: If the number of elements of the domain are greater than the number of elements in a codomain, then there are two different values that map to the same. Also we introduce a one sided inequality to simplify a duplicateable proof. (Contributed by metakunt, 2-May-2025.)
Hypotheses
Ref Expression
hashnexinjle.1 (𝜑𝐴 ∈ Fin)
hashnexinjle.2 (𝜑𝐵 ∈ Fin)
hashnexinjle.3 (𝜑 → (♯‘𝐵) < (♯‘𝐴))
hashnexinjle.4 (𝜑𝐹:𝐴𝐵)
hashnexinjle.5 (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
hashnexinjle (𝜑 → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem hashnexinjle
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 483 . 2 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
2 fveq2 6902 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
32eqeq2d 2739 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐹𝑦) = (𝐹𝑥) ↔ (𝐹𝑦) = (𝐹𝑧)))
4 breq2 5156 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑦 < 𝑥𝑦 < 𝑧))
53, 4anbi12d 630 . . . . . . . 8 (𝑥 = 𝑧 → (((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥) ↔ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦 < 𝑧)))
6 fveqeq2 6911 . . . . . . . . 9 (𝑦 = 𝑤 → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝐹𝑤) = (𝐹𝑧)))
7 breq1 5155 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑦 < 𝑧𝑤 < 𝑧))
86, 7anbi12d 630 . . . . . . . 8 (𝑦 = 𝑤 → (((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦 < 𝑧) ↔ ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧)))
95, 8cbvrex2vw 3237 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥) ↔ ∃𝑧𝐴𝑤𝐴 ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧))
109a1i 11 . . . . . 6 (𝜑 → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥) ↔ ∃𝑧𝐴𝑤𝐴 ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧)))
1110biimpd 228 . . . . 5 (𝜑 → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥) → ∃𝑧𝐴𝑤𝐴 ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧)))
1211imp 405 . . . 4 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) → ∃𝑧𝐴𝑤𝐴 ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧))
13 fveq2 6902 . . . . . . 7 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
1413eqeq2d 2739 . . . . . 6 (𝑧 = 𝑦 → ((𝐹𝑤) = (𝐹𝑧) ↔ (𝐹𝑤) = (𝐹𝑦)))
15 breq2 5156 . . . . . 6 (𝑧 = 𝑦 → (𝑤 < 𝑧𝑤 < 𝑦))
1614, 15anbi12d 630 . . . . 5 (𝑧 = 𝑦 → (((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧) ↔ ((𝐹𝑤) = (𝐹𝑦) ∧ 𝑤 < 𝑦)))
17 fveqeq2 6911 . . . . . 6 (𝑤 = 𝑥 → ((𝐹𝑤) = (𝐹𝑦) ↔ (𝐹𝑥) = (𝐹𝑦)))
18 breq1 5155 . . . . . 6 (𝑤 = 𝑥 → (𝑤 < 𝑦𝑥 < 𝑦))
1917, 18anbi12d 630 . . . . 5 (𝑤 = 𝑥 → (((𝐹𝑤) = (𝐹𝑦) ∧ 𝑤 < 𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)))
2016, 19cbvrex2vw 3237 . . . 4 (∃𝑧𝐴𝑤𝐴 ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧) ↔ ∃𝑦𝐴𝑥𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
2112, 20sylib 217 . . 3 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) → ∃𝑦𝐴𝑥𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
22 rexcom 3285 . . 3 (∃𝑦𝐴𝑥𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ↔ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
2321, 22sylib 217 . 2 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
24 hashnexinjle.1 . . . 4 (𝜑𝐴 ∈ Fin)
25 hashnexinjle.2 . . . 4 (𝜑𝐵 ∈ Fin)
26 hashnexinjle.3 . . . 4 (𝜑 → (♯‘𝐵) < (♯‘𝐴))
27 hashnexinjle.4 . . . 4 (𝜑𝐹:𝐴𝐵)
2824, 25, 26, 27hashnexinj 41631 . . 3 (𝜑 → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
29 simplrl 775 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑥 < 𝑦) → (𝐹𝑥) = (𝐹𝑦))
30 simpr 483 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
3129, 30jca 510 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑥 < 𝑦) → ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
3231orcd 871 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑥 < 𝑦) → (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
33 simplrl 775 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑦 < 𝑥) → (𝐹𝑥) = (𝐹𝑦))
3433eqcomd 2734 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑦 < 𝑥) → (𝐹𝑦) = (𝐹𝑥))
35 simpr 483 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥)
3634, 35jca 510 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑦 < 𝑥) → ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥))
3736olcd 872 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑦 < 𝑥) → (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
38 simprr 771 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → 𝑥𝑦)
39 simpl 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝜑)
40 simprl 769 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
4139, 40jca 510 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝜑𝑥𝐴))
42 hashnexinjle.5 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
4342sselda 3982 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
4441, 43syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 ∈ ℝ)
4544adantr 479 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ ℝ)
46 simprr 771 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
4739, 46jca 510 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝜑𝑦𝐴))
4842sselda 3982 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ)
4947, 48syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑦 ∈ ℝ)
5049adantr 479 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → 𝑦 ∈ ℝ)
5145, 50lttri2d 11391 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑦 < 𝑥)))
5238, 51mpbid 231 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → (𝑥 < 𝑦𝑦 < 𝑥))
5332, 37, 52mpjaodan 956 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
5453ex 411 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦) → (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥))))
5554reximdvva 3203 . . . . . . 7 (𝜑 → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦) → ∃𝑥𝐴𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥))))
5655imp 405 . . . . . 6 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → ∃𝑥𝐴𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
57 r19.43 3119 . . . . . . 7 (∃𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) ↔ (∃𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
5857rexbii 3091 . . . . . 6 (∃𝑥𝐴𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) ↔ ∃𝑥𝐴 (∃𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
5956, 58sylib 217 . . . . 5 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → ∃𝑥𝐴 (∃𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
60 r19.43 3119 . . . . 5 (∃𝑥𝐴 (∃𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) ↔ (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
6159, 60sylib 217 . . . 4 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
6261ex 411 . . 3 (𝜑 → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦) → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥))))
6328, 62mpd 15 . 2 (𝜑 → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
641, 23, 63mpjaodan 956 1 (𝜑 → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2937  wrex 3067  wss 3949   class class class wbr 5152  wf 6549  cfv 6553  Fincfn 8970  cr 11145   < clt 11286  chash 14329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-oadd 8497  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-fz 13525  df-hash 14330
This theorem is referenced by:  aks6d1c2  41633
  Copyright terms: Public domain W3C validator