Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashnexinjle Structured version   Visualization version   GIF version

Theorem hashnexinjle 42245
Description: If the number of elements of the domain are greater than the number of elements in a codomain, then there are two different values that map to the same. Also we introduce a one sided inequality to simplify a duplicateable proof. (Contributed by metakunt, 2-May-2025.)
Hypotheses
Ref Expression
hashnexinjle.1 (𝜑𝐴 ∈ Fin)
hashnexinjle.2 (𝜑𝐵 ∈ Fin)
hashnexinjle.3 (𝜑 → (♯‘𝐵) < (♯‘𝐴))
hashnexinjle.4 (𝜑𝐹:𝐴𝐵)
hashnexinjle.5 (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
hashnexinjle (𝜑 → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem hashnexinjle
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
2 fveq2 6830 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
32eqeq2d 2744 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐹𝑦) = (𝐹𝑥) ↔ (𝐹𝑦) = (𝐹𝑧)))
4 breq2 5099 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑦 < 𝑥𝑦 < 𝑧))
53, 4anbi12d 632 . . . . . . . 8 (𝑥 = 𝑧 → (((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥) ↔ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦 < 𝑧)))
6 fveqeq2 6839 . . . . . . . . 9 (𝑦 = 𝑤 → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝐹𝑤) = (𝐹𝑧)))
7 breq1 5098 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑦 < 𝑧𝑤 < 𝑧))
86, 7anbi12d 632 . . . . . . . 8 (𝑦 = 𝑤 → (((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦 < 𝑧) ↔ ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧)))
95, 8cbvrex2vw 3216 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥) ↔ ∃𝑧𝐴𝑤𝐴 ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧))
109a1i 11 . . . . . 6 (𝜑 → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥) ↔ ∃𝑧𝐴𝑤𝐴 ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧)))
1110biimpd 229 . . . . 5 (𝜑 → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥) → ∃𝑧𝐴𝑤𝐴 ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧)))
1211imp 406 . . . 4 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) → ∃𝑧𝐴𝑤𝐴 ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧))
13 fveq2 6830 . . . . . . 7 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
1413eqeq2d 2744 . . . . . 6 (𝑧 = 𝑦 → ((𝐹𝑤) = (𝐹𝑧) ↔ (𝐹𝑤) = (𝐹𝑦)))
15 breq2 5099 . . . . . 6 (𝑧 = 𝑦 → (𝑤 < 𝑧𝑤 < 𝑦))
1614, 15anbi12d 632 . . . . 5 (𝑧 = 𝑦 → (((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧) ↔ ((𝐹𝑤) = (𝐹𝑦) ∧ 𝑤 < 𝑦)))
17 fveqeq2 6839 . . . . . 6 (𝑤 = 𝑥 → ((𝐹𝑤) = (𝐹𝑦) ↔ (𝐹𝑥) = (𝐹𝑦)))
18 breq1 5098 . . . . . 6 (𝑤 = 𝑥 → (𝑤 < 𝑦𝑥 < 𝑦))
1917, 18anbi12d 632 . . . . 5 (𝑤 = 𝑥 → (((𝐹𝑤) = (𝐹𝑦) ∧ 𝑤 < 𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)))
2016, 19cbvrex2vw 3216 . . . 4 (∃𝑧𝐴𝑤𝐴 ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧) ↔ ∃𝑦𝐴𝑥𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
2112, 20sylib 218 . . 3 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) → ∃𝑦𝐴𝑥𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
22 rexcom 3262 . . 3 (∃𝑦𝐴𝑥𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ↔ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
2321, 22sylib 218 . 2 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
24 hashnexinjle.1 . . . 4 (𝜑𝐴 ∈ Fin)
25 hashnexinjle.2 . . . 4 (𝜑𝐵 ∈ Fin)
26 hashnexinjle.3 . . . 4 (𝜑 → (♯‘𝐵) < (♯‘𝐴))
27 hashnexinjle.4 . . . 4 (𝜑𝐹:𝐴𝐵)
2824, 25, 26, 27hashnexinj 42244 . . 3 (𝜑 → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
29 simplrl 776 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑥 < 𝑦) → (𝐹𝑥) = (𝐹𝑦))
30 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
3129, 30jca 511 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑥 < 𝑦) → ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
3231orcd 873 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑥 < 𝑦) → (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
33 simplrl 776 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑦 < 𝑥) → (𝐹𝑥) = (𝐹𝑦))
3433eqcomd 2739 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑦 < 𝑥) → (𝐹𝑦) = (𝐹𝑥))
35 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥)
3634, 35jca 511 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑦 < 𝑥) → ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥))
3736olcd 874 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑦 < 𝑥) → (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
38 simprr 772 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → 𝑥𝑦)
39 simpl 482 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝜑)
40 simprl 770 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
4139, 40jca 511 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝜑𝑥𝐴))
42 hashnexinjle.5 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
4342sselda 3930 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
4441, 43syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 ∈ ℝ)
4544adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ ℝ)
46 simprr 772 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
4739, 46jca 511 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝜑𝑦𝐴))
4842sselda 3930 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ)
4947, 48syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑦 ∈ ℝ)
5049adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → 𝑦 ∈ ℝ)
5145, 50lttri2d 11261 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑦 < 𝑥)))
5238, 51mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → (𝑥 < 𝑦𝑦 < 𝑥))
5332, 37, 52mpjaodan 960 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
5453ex 412 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦) → (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥))))
5554reximdvva 3181 . . . . . . 7 (𝜑 → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦) → ∃𝑥𝐴𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥))))
5655imp 406 . . . . . 6 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → ∃𝑥𝐴𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
57 r19.43 3101 . . . . . . 7 (∃𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) ↔ (∃𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
5857rexbii 3080 . . . . . 6 (∃𝑥𝐴𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) ↔ ∃𝑥𝐴 (∃𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
5956, 58sylib 218 . . . . 5 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → ∃𝑥𝐴 (∃𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
60 r19.43 3101 . . . . 5 (∃𝑥𝐴 (∃𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) ↔ (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
6159, 60sylib 218 . . . 4 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
6261ex 412 . . 3 (𝜑 → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦) → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥))))
6328, 62mpd 15 . 2 (𝜑 → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
641, 23, 63mpjaodan 960 1 (𝜑 → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  wrex 3057  wss 3898   class class class wbr 5095  wf 6484  cfv 6488  Fincfn 8877  cr 11014   < clt 11155  chash 14241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-oadd 8397  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-xnn0 12464  df-z 12478  df-uz 12741  df-fz 13412  df-hash 14242
This theorem is referenced by:  aks6d1c2  42246
  Copyright terms: Public domain W3C validator