Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashnexinjle Structured version   Visualization version   GIF version

Theorem hashnexinjle 42086
Description: If the number of elements of the domain are greater than the number of elements in a codomain, then there are two different values that map to the same. Also we introduce a one sided inequality to simplify a duplicateable proof. (Contributed by metakunt, 2-May-2025.)
Hypotheses
Ref Expression
hashnexinjle.1 (𝜑𝐴 ∈ Fin)
hashnexinjle.2 (𝜑𝐵 ∈ Fin)
hashnexinjle.3 (𝜑 → (♯‘𝐵) < (♯‘𝐴))
hashnexinjle.4 (𝜑𝐹:𝐴𝐵)
hashnexinjle.5 (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
hashnexinjle (𝜑 → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem hashnexinjle
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
2 fveq2 6920 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
32eqeq2d 2751 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐹𝑦) = (𝐹𝑥) ↔ (𝐹𝑦) = (𝐹𝑧)))
4 breq2 5170 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑦 < 𝑥𝑦 < 𝑧))
53, 4anbi12d 631 . . . . . . . 8 (𝑥 = 𝑧 → (((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥) ↔ ((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦 < 𝑧)))
6 fveqeq2 6929 . . . . . . . . 9 (𝑦 = 𝑤 → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝐹𝑤) = (𝐹𝑧)))
7 breq1 5169 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑦 < 𝑧𝑤 < 𝑧))
86, 7anbi12d 631 . . . . . . . 8 (𝑦 = 𝑤 → (((𝐹𝑦) = (𝐹𝑧) ∧ 𝑦 < 𝑧) ↔ ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧)))
95, 8cbvrex2vw 3248 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥) ↔ ∃𝑧𝐴𝑤𝐴 ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧))
109a1i 11 . . . . . 6 (𝜑 → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥) ↔ ∃𝑧𝐴𝑤𝐴 ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧)))
1110biimpd 229 . . . . 5 (𝜑 → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥) → ∃𝑧𝐴𝑤𝐴 ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧)))
1211imp 406 . . . 4 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) → ∃𝑧𝐴𝑤𝐴 ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧))
13 fveq2 6920 . . . . . . 7 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
1413eqeq2d 2751 . . . . . 6 (𝑧 = 𝑦 → ((𝐹𝑤) = (𝐹𝑧) ↔ (𝐹𝑤) = (𝐹𝑦)))
15 breq2 5170 . . . . . 6 (𝑧 = 𝑦 → (𝑤 < 𝑧𝑤 < 𝑦))
1614, 15anbi12d 631 . . . . 5 (𝑧 = 𝑦 → (((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧) ↔ ((𝐹𝑤) = (𝐹𝑦) ∧ 𝑤 < 𝑦)))
17 fveqeq2 6929 . . . . . 6 (𝑤 = 𝑥 → ((𝐹𝑤) = (𝐹𝑦) ↔ (𝐹𝑥) = (𝐹𝑦)))
18 breq1 5169 . . . . . 6 (𝑤 = 𝑥 → (𝑤 < 𝑦𝑥 < 𝑦))
1917, 18anbi12d 631 . . . . 5 (𝑤 = 𝑥 → (((𝐹𝑤) = (𝐹𝑦) ∧ 𝑤 < 𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)))
2016, 19cbvrex2vw 3248 . . . 4 (∃𝑧𝐴𝑤𝐴 ((𝐹𝑤) = (𝐹𝑧) ∧ 𝑤 < 𝑧) ↔ ∃𝑦𝐴𝑥𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
2112, 20sylib 218 . . 3 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) → ∃𝑦𝐴𝑥𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
22 rexcom 3296 . . 3 (∃𝑦𝐴𝑥𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ↔ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
2321, 22sylib 218 . 2 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
24 hashnexinjle.1 . . . 4 (𝜑𝐴 ∈ Fin)
25 hashnexinjle.2 . . . 4 (𝜑𝐵 ∈ Fin)
26 hashnexinjle.3 . . . 4 (𝜑 → (♯‘𝐵) < (♯‘𝐴))
27 hashnexinjle.4 . . . 4 (𝜑𝐹:𝐴𝐵)
2824, 25, 26, 27hashnexinj 42085 . . 3 (𝜑 → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦))
29 simplrl 776 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑥 < 𝑦) → (𝐹𝑥) = (𝐹𝑦))
30 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
3129, 30jca 511 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑥 < 𝑦) → ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
3231orcd 872 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑥 < 𝑦) → (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
33 simplrl 776 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑦 < 𝑥) → (𝐹𝑥) = (𝐹𝑦))
3433eqcomd 2746 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑦 < 𝑥) → (𝐹𝑦) = (𝐹𝑥))
35 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥)
3634, 35jca 511 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑦 < 𝑥) → ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥))
3736olcd 873 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) ∧ 𝑦 < 𝑥) → (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
38 simprr 772 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → 𝑥𝑦)
39 simpl 482 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝜑)
40 simprl 770 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
4139, 40jca 511 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝜑𝑥𝐴))
42 hashnexinjle.5 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
4342sselda 4008 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
4441, 43syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 ∈ ℝ)
4544adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ ℝ)
46 simprr 772 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
4739, 46jca 511 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝜑𝑦𝐴))
4842sselda 4008 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ)
4947, 48syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑦 ∈ ℝ)
5049adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → 𝑦 ∈ ℝ)
5145, 50lttri2d 11429 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑦 < 𝑥)))
5238, 51mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → (𝑥 < 𝑦𝑦 < 𝑥))
5332, 37, 52mpjaodan 959 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
5453ex 412 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦) → (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥))))
5554reximdvva 3213 . . . . . . 7 (𝜑 → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦) → ∃𝑥𝐴𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥))))
5655imp 406 . . . . . 6 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → ∃𝑥𝐴𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
57 r19.43 3128 . . . . . . 7 (∃𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) ↔ (∃𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
5857rexbii 3100 . . . . . 6 (∃𝑥𝐴𝑦𝐴 (((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) ↔ ∃𝑥𝐴 (∃𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
5956, 58sylib 218 . . . . 5 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → ∃𝑥𝐴 (∃𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
60 r19.43 3128 . . . . 5 (∃𝑥𝐴 (∃𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)) ↔ (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
6159, 60sylib 218 . . . 4 ((𝜑 ∧ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦)) → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
6261ex 412 . . 3 (𝜑 → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑦) → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥))))
6328, 62mpd 15 . 2 (𝜑 → (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦) ∨ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑦) = (𝐹𝑥) ∧ 𝑦 < 𝑥)))
641, 23, 63mpjaodan 959 1 (𝜑 → ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wrex 3076  wss 3976   class class class wbr 5166  wf 6569  cfv 6573  Fincfn 9003  cr 11183   < clt 11324  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380
This theorem is referenced by:  aks6d1c2  42087
  Copyright terms: Public domain W3C validator