Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lactlmhm Structured version   Visualization version   GIF version

Theorem lactlmhm 33637
Description: In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is a module homomorphism, analogous to ringlghm 20223. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
lactlmhm.b 𝐵 = (Base‘𝐴)
lactlmhm.m · = (.r𝐴)
lactlmhm.f 𝐹 = (𝑥𝐵 ↦ (𝐶 · 𝑥))
lactlmhm.a (𝜑𝐴 ∈ AssAlg)
lactlmhm.c (𝜑𝐶𝐵)
Assertion
Ref Expression
lactlmhm (𝜑𝐹 ∈ (𝐴 LMHom 𝐴))
Distinct variable groups:   𝑥, ·   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem lactlmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lactlmhm.a . . 3 (𝜑𝐴 ∈ AssAlg)
2 assalmod 21790 . . 3 (𝐴 ∈ AssAlg → 𝐴 ∈ LMod)
31, 2syl 17 . 2 (𝜑𝐴 ∈ LMod)
4 lactlmhm.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝐶 · 𝑥))
5 assaring 21791 . . . . 5 (𝐴 ∈ AssAlg → 𝐴 ∈ Ring)
61, 5syl 17 . . . 4 (𝜑𝐴 ∈ Ring)
7 lactlmhm.c . . . 4 (𝜑𝐶𝐵)
8 lactlmhm.b . . . . 5 𝐵 = (Base‘𝐴)
9 lactlmhm.m . . . . 5 · = (.r𝐴)
108, 9ringlghm 20223 . . . 4 ((𝐴 ∈ Ring ∧ 𝐶𝐵) → (𝑥𝐵 ↦ (𝐶 · 𝑥)) ∈ (𝐴 GrpHom 𝐴))
116, 7, 10syl2anc 584 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝐶 · 𝑥)) ∈ (𝐴 GrpHom 𝐴))
124, 11eqeltrid 2833 . 2 (𝜑𝐹 ∈ (𝐴 GrpHom 𝐴))
13 eqidd 2731 . 2 (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐴))
141ad2antrr 726 . . . . . 6 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → 𝐴 ∈ AssAlg)
15 simplr 768 . . . . . 6 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → 𝑎 ∈ (Base‘(Scalar‘𝐴)))
167ad2antrr 726 . . . . . 6 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → 𝐶𝐵)
17 simpr 484 . . . . . 6 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → 𝑏𝐵)
18 eqid 2730 . . . . . . 7 (Scalar‘𝐴) = (Scalar‘𝐴)
19 eqid 2730 . . . . . . 7 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
20 eqid 2730 . . . . . . 7 ( ·𝑠𝐴) = ( ·𝑠𝐴)
218, 18, 19, 20, 9assaassr 21789 . . . . . 6 ((𝐴 ∈ AssAlg ∧ (𝑎 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝐶𝐵𝑏𝐵)) → (𝐶 · (𝑎( ·𝑠𝐴)𝑏)) = (𝑎( ·𝑠𝐴)(𝐶 · 𝑏)))
2214, 15, 16, 17, 21syl13anc 1374 . . . . 5 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → (𝐶 · (𝑎( ·𝑠𝐴)𝑏)) = (𝑎( ·𝑠𝐴)(𝐶 · 𝑏)))
23 oveq2 7349 . . . . . 6 (𝑥 = (𝑎( ·𝑠𝐴)𝑏) → (𝐶 · 𝑥) = (𝐶 · (𝑎( ·𝑠𝐴)𝑏)))
243ad2antrr 726 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → 𝐴 ∈ LMod)
258, 18, 20, 19, 24, 15, 17lmodvscld 20805 . . . . . 6 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → (𝑎( ·𝑠𝐴)𝑏) ∈ 𝐵)
26 ovexd 7376 . . . . . 6 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → (𝐶 · (𝑎( ·𝑠𝐴)𝑏)) ∈ V)
274, 23, 25, 26fvmptd3 6947 . . . . 5 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → (𝐹‘(𝑎( ·𝑠𝐴)𝑏)) = (𝐶 · (𝑎( ·𝑠𝐴)𝑏)))
28 oveq2 7349 . . . . . . 7 (𝑥 = 𝑏 → (𝐶 · 𝑥) = (𝐶 · 𝑏))
29 ovexd 7376 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → (𝐶 · 𝑏) ∈ V)
304, 28, 17, 29fvmptd3 6947 . . . . . 6 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → (𝐹𝑏) = (𝐶 · 𝑏))
3130oveq2d 7357 . . . . 5 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → (𝑎( ·𝑠𝐴)(𝐹𝑏)) = (𝑎( ·𝑠𝐴)(𝐶 · 𝑏)))
3222, 27, 313eqtr4d 2775 . . . 4 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → (𝐹‘(𝑎( ·𝑠𝐴)𝑏)) = (𝑎( ·𝑠𝐴)(𝐹𝑏)))
3332anasss 466 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝐴)𝑏)) = (𝑎( ·𝑠𝐴)(𝐹𝑏)))
3433ralrimivva 3173 . 2 (𝜑 → ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏𝐵 (𝐹‘(𝑎( ·𝑠𝐴)𝑏)) = (𝑎( ·𝑠𝐴)(𝐹𝑏)))
3518, 18, 19, 8, 20, 20islmhm 20954 . . 3 (𝐹 ∈ (𝐴 LMHom 𝐴) ↔ ((𝐴 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝐴 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝐴) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏𝐵 (𝐹‘(𝑎( ·𝑠𝐴)𝑏)) = (𝑎( ·𝑠𝐴)(𝐹𝑏)))))
3635biimpri 228 . 2 (((𝐴 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝐴 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝐴) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏𝐵 (𝐹‘(𝑎( ·𝑠𝐴)𝑏)) = (𝑎( ·𝑠𝐴)(𝐹𝑏)))) → 𝐹 ∈ (𝐴 LMHom 𝐴))
373, 3, 12, 13, 34, 36syl23anc 1379 1 (𝜑𝐹 ∈ (𝐴 LMHom 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  wral 3045  Vcvv 3434  cmpt 5170  cfv 6477  (class class class)co 7341  Basecbs 17112  .rcmulr 17154  Scalarcsca 17156   ·𝑠 cvsca 17157   GrpHom cghm 19117  Ringcrg 20144  LModclmod 20786   LMHom clmhm 20946  AssAlgcasa 21780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-plusg 17166  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-ghm 19118  df-mgp 20052  df-ring 20146  df-lmod 20788  df-lmhm 20949  df-assa 21783
This theorem is referenced by:  assalactf1o  33638
  Copyright terms: Public domain W3C validator