| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lactlmhm | Structured version Visualization version GIF version | ||
| Description: In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is a module homomorphism, analogous to ringlghm 20272. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| lactlmhm.b | ⊢ 𝐵 = (Base‘𝐴) |
| lactlmhm.m | ⊢ · = (.r‘𝐴) |
| lactlmhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) |
| lactlmhm.a | ⊢ (𝜑 → 𝐴 ∈ AssAlg) |
| lactlmhm.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| lactlmhm | ⊢ (𝜑 → 𝐹 ∈ (𝐴 LMHom 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lactlmhm.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ AssAlg) | |
| 2 | assalmod 21820 | . . 3 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ LMod) |
| 4 | lactlmhm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) | |
| 5 | assaring 21821 | . . . . 5 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ Ring) | |
| 6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Ring) |
| 7 | lactlmhm.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 8 | lactlmhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 9 | lactlmhm.m | . . . . 5 ⊢ · = (.r‘𝐴) | |
| 10 | 8, 9 | ringlghm 20272 | . . . 4 ⊢ ((𝐴 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) ∈ (𝐴 GrpHom 𝐴)) |
| 11 | 6, 7, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) ∈ (𝐴 GrpHom 𝐴)) |
| 12 | 4, 11 | eqeltrid 2838 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐴 GrpHom 𝐴)) |
| 13 | eqidd 2736 | . 2 ⊢ (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐴)) | |
| 14 | 1 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝐴 ∈ AssAlg) |
| 15 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝑎 ∈ (Base‘(Scalar‘𝐴))) | |
| 16 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
| 17 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) | |
| 18 | eqid 2735 | . . . . . . 7 ⊢ (Scalar‘𝐴) = (Scalar‘𝐴) | |
| 19 | eqid 2735 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)) | |
| 20 | eqid 2735 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
| 21 | 8, 18, 19, 20, 9 | assaassr 21819 | . . . . . 6 ⊢ ((𝐴 ∈ AssAlg ∧ (𝑎 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝐶 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐶 · 𝑏))) |
| 22 | 14, 15, 16, 17, 21 | syl13anc 1374 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐶 · 𝑏))) |
| 23 | oveq2 7413 | . . . . . 6 ⊢ (𝑥 = (𝑎( ·𝑠 ‘𝐴)𝑏) → (𝐶 · 𝑥) = (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏))) | |
| 24 | 3 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝐴 ∈ LMod) |
| 25 | 8, 18, 20, 19, 24, 15, 17 | lmodvscld 20836 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝑎( ·𝑠 ‘𝐴)𝑏) ∈ 𝐵) |
| 26 | ovexd 7440 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏)) ∈ V) | |
| 27 | 4, 23, 25, 26 | fvmptd3 7009 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏))) |
| 28 | oveq2 7413 | . . . . . . 7 ⊢ (𝑥 = 𝑏 → (𝐶 · 𝑥) = (𝐶 · 𝑏)) | |
| 29 | ovexd 7440 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐶 · 𝑏) ∈ V) | |
| 30 | 4, 28, 17, 29 | fvmptd3 7009 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑏) = (𝐶 · 𝑏)) |
| 31 | 30 | oveq2d 7421 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐶 · 𝑏))) |
| 32 | 22, 27, 31 | 3eqtr4d 2780 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))) |
| 33 | 32 | anasss 466 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))) |
| 34 | 33 | ralrimivva 3187 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏 ∈ 𝐵 (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))) |
| 35 | 18, 18, 19, 8, 20, 20 | islmhm 20985 | . . 3 ⊢ (𝐹 ∈ (𝐴 LMHom 𝐴) ↔ ((𝐴 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝐴 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝐴) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏 ∈ 𝐵 (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))))) |
| 36 | 35 | biimpri 228 | . 2 ⊢ (((𝐴 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝐴 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝐴) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏 ∈ 𝐵 (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏)))) → 𝐹 ∈ (𝐴 LMHom 𝐴)) |
| 37 | 3, 3, 12, 13, 34, 36 | syl23anc 1379 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐴 LMHom 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 .rcmulr 17272 Scalarcsca 17274 ·𝑠 cvsca 17275 GrpHom cghm 19195 Ringcrg 20193 LModclmod 20817 LMHom clmhm 20977 AssAlgcasa 21810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-ghm 19196 df-mgp 20101 df-ring 20195 df-lmod 20819 df-lmhm 20980 df-assa 21813 |
| This theorem is referenced by: assalactf1o 33675 |
| Copyright terms: Public domain | W3C validator |