Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lactlmhm Structured version   Visualization version   GIF version

Theorem lactlmhm 33606
Description: In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is a module homomorphism, analogous to ringlghm 20215. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
lactlmhm.b 𝐵 = (Base‘𝐴)
lactlmhm.m · = (.r𝐴)
lactlmhm.f 𝐹 = (𝑥𝐵 ↦ (𝐶 · 𝑥))
lactlmhm.a (𝜑𝐴 ∈ AssAlg)
lactlmhm.c (𝜑𝐶𝐵)
Assertion
Ref Expression
lactlmhm (𝜑𝐹 ∈ (𝐴 LMHom 𝐴))
Distinct variable groups:   𝑥, ·   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem lactlmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lactlmhm.a . . 3 (𝜑𝐴 ∈ AssAlg)
2 assalmod 21785 . . 3 (𝐴 ∈ AssAlg → 𝐴 ∈ LMod)
31, 2syl 17 . 2 (𝜑𝐴 ∈ LMod)
4 lactlmhm.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝐶 · 𝑥))
5 assaring 21786 . . . . 5 (𝐴 ∈ AssAlg → 𝐴 ∈ Ring)
61, 5syl 17 . . . 4 (𝜑𝐴 ∈ Ring)
7 lactlmhm.c . . . 4 (𝜑𝐶𝐵)
8 lactlmhm.b . . . . 5 𝐵 = (Base‘𝐴)
9 lactlmhm.m . . . . 5 · = (.r𝐴)
108, 9ringlghm 20215 . . . 4 ((𝐴 ∈ Ring ∧ 𝐶𝐵) → (𝑥𝐵 ↦ (𝐶 · 𝑥)) ∈ (𝐴 GrpHom 𝐴))
116, 7, 10syl2anc 584 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝐶 · 𝑥)) ∈ (𝐴 GrpHom 𝐴))
124, 11eqeltrid 2832 . 2 (𝜑𝐹 ∈ (𝐴 GrpHom 𝐴))
13 eqidd 2730 . 2 (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐴))
141ad2antrr 726 . . . . . 6 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → 𝐴 ∈ AssAlg)
15 simplr 768 . . . . . 6 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → 𝑎 ∈ (Base‘(Scalar‘𝐴)))
167ad2antrr 726 . . . . . 6 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → 𝐶𝐵)
17 simpr 484 . . . . . 6 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → 𝑏𝐵)
18 eqid 2729 . . . . . . 7 (Scalar‘𝐴) = (Scalar‘𝐴)
19 eqid 2729 . . . . . . 7 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
20 eqid 2729 . . . . . . 7 ( ·𝑠𝐴) = ( ·𝑠𝐴)
218, 18, 19, 20, 9assaassr 21784 . . . . . 6 ((𝐴 ∈ AssAlg ∧ (𝑎 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝐶𝐵𝑏𝐵)) → (𝐶 · (𝑎( ·𝑠𝐴)𝑏)) = (𝑎( ·𝑠𝐴)(𝐶 · 𝑏)))
2214, 15, 16, 17, 21syl13anc 1374 . . . . 5 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → (𝐶 · (𝑎( ·𝑠𝐴)𝑏)) = (𝑎( ·𝑠𝐴)(𝐶 · 𝑏)))
23 oveq2 7361 . . . . . 6 (𝑥 = (𝑎( ·𝑠𝐴)𝑏) → (𝐶 · 𝑥) = (𝐶 · (𝑎( ·𝑠𝐴)𝑏)))
243ad2antrr 726 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → 𝐴 ∈ LMod)
258, 18, 20, 19, 24, 15, 17lmodvscld 20800 . . . . . 6 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → (𝑎( ·𝑠𝐴)𝑏) ∈ 𝐵)
26 ovexd 7388 . . . . . 6 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → (𝐶 · (𝑎( ·𝑠𝐴)𝑏)) ∈ V)
274, 23, 25, 26fvmptd3 6957 . . . . 5 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → (𝐹‘(𝑎( ·𝑠𝐴)𝑏)) = (𝐶 · (𝑎( ·𝑠𝐴)𝑏)))
28 oveq2 7361 . . . . . . 7 (𝑥 = 𝑏 → (𝐶 · 𝑥) = (𝐶 · 𝑏))
29 ovexd 7388 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → (𝐶 · 𝑏) ∈ V)
304, 28, 17, 29fvmptd3 6957 . . . . . 6 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → (𝐹𝑏) = (𝐶 · 𝑏))
3130oveq2d 7369 . . . . 5 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → (𝑎( ·𝑠𝐴)(𝐹𝑏)) = (𝑎( ·𝑠𝐴)(𝐶 · 𝑏)))
3222, 27, 313eqtr4d 2774 . . . 4 (((𝜑𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏𝐵) → (𝐹‘(𝑎( ·𝑠𝐴)𝑏)) = (𝑎( ·𝑠𝐴)(𝐹𝑏)))
3332anasss 466 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝐴)𝑏)) = (𝑎( ·𝑠𝐴)(𝐹𝑏)))
3433ralrimivva 3172 . 2 (𝜑 → ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏𝐵 (𝐹‘(𝑎( ·𝑠𝐴)𝑏)) = (𝑎( ·𝑠𝐴)(𝐹𝑏)))
3518, 18, 19, 8, 20, 20islmhm 20949 . . 3 (𝐹 ∈ (𝐴 LMHom 𝐴) ↔ ((𝐴 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝐴 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝐴) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏𝐵 (𝐹‘(𝑎( ·𝑠𝐴)𝑏)) = (𝑎( ·𝑠𝐴)(𝐹𝑏)))))
3635biimpri 228 . 2 (((𝐴 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝐴 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝐴) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏𝐵 (𝐹‘(𝑎( ·𝑠𝐴)𝑏)) = (𝑎( ·𝑠𝐴)(𝐹𝑏)))) → 𝐹 ∈ (𝐴 LMHom 𝐴))
373, 3, 12, 13, 34, 36syl23anc 1379 1 (𝜑𝐹 ∈ (𝐴 LMHom 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  cmpt 5176  cfv 6486  (class class class)co 7353  Basecbs 17138  .rcmulr 17180  Scalarcsca 17182   ·𝑠 cvsca 17183   GrpHom cghm 19109  Ringcrg 20136  LModclmod 20781   LMHom clmhm 20941  AssAlgcasa 21775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-ghm 19110  df-mgp 20044  df-ring 20138  df-lmod 20783  df-lmhm 20944  df-assa 21778
This theorem is referenced by:  assalactf1o  33607
  Copyright terms: Public domain W3C validator