|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lactlmhm | Structured version Visualization version GIF version | ||
| Description: In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is a module homomorphism, analogous to ringlghm 20309. (Contributed by Thierry Arnoux, 3-Aug-2025.) | 
| Ref | Expression | 
|---|---|
| lactlmhm.b | ⊢ 𝐵 = (Base‘𝐴) | 
| lactlmhm.m | ⊢ · = (.r‘𝐴) | 
| lactlmhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) | 
| lactlmhm.a | ⊢ (𝜑 → 𝐴 ∈ AssAlg) | 
| lactlmhm.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) | 
| Ref | Expression | 
|---|---|
| lactlmhm | ⊢ (𝜑 → 𝐹 ∈ (𝐴 LMHom 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lactlmhm.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ AssAlg) | |
| 2 | assalmod 21880 | . . 3 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ LMod) | 
| 4 | lactlmhm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) | |
| 5 | assaring 21881 | . . . . 5 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ Ring) | |
| 6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Ring) | 
| 7 | lactlmhm.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 8 | lactlmhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 9 | lactlmhm.m | . . . . 5 ⊢ · = (.r‘𝐴) | |
| 10 | 8, 9 | ringlghm 20309 | . . . 4 ⊢ ((𝐴 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) ∈ (𝐴 GrpHom 𝐴)) | 
| 11 | 6, 7, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) ∈ (𝐴 GrpHom 𝐴)) | 
| 12 | 4, 11 | eqeltrid 2845 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐴 GrpHom 𝐴)) | 
| 13 | eqidd 2738 | . 2 ⊢ (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐴)) | |
| 14 | 1 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝐴 ∈ AssAlg) | 
| 15 | simplr 769 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝑎 ∈ (Base‘(Scalar‘𝐴))) | |
| 16 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝐶 ∈ 𝐵) | 
| 17 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) | |
| 18 | eqid 2737 | . . . . . . 7 ⊢ (Scalar‘𝐴) = (Scalar‘𝐴) | |
| 19 | eqid 2737 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)) | |
| 20 | eqid 2737 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
| 21 | 8, 18, 19, 20, 9 | assaassr 21879 | . . . . . 6 ⊢ ((𝐴 ∈ AssAlg ∧ (𝑎 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝐶 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐶 · 𝑏))) | 
| 22 | 14, 15, 16, 17, 21 | syl13anc 1374 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐶 · 𝑏))) | 
| 23 | oveq2 7439 | . . . . . 6 ⊢ (𝑥 = (𝑎( ·𝑠 ‘𝐴)𝑏) → (𝐶 · 𝑥) = (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏))) | |
| 24 | 3 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝐴 ∈ LMod) | 
| 25 | 8, 18, 20, 19, 24, 15, 17 | lmodvscld 20877 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝑎( ·𝑠 ‘𝐴)𝑏) ∈ 𝐵) | 
| 26 | ovexd 7466 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏)) ∈ V) | |
| 27 | 4, 23, 25, 26 | fvmptd3 7039 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏))) | 
| 28 | oveq2 7439 | . . . . . . 7 ⊢ (𝑥 = 𝑏 → (𝐶 · 𝑥) = (𝐶 · 𝑏)) | |
| 29 | ovexd 7466 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐶 · 𝑏) ∈ V) | |
| 30 | 4, 28, 17, 29 | fvmptd3 7039 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑏) = (𝐶 · 𝑏)) | 
| 31 | 30 | oveq2d 7447 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐶 · 𝑏))) | 
| 32 | 22, 27, 31 | 3eqtr4d 2787 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))) | 
| 33 | 32 | anasss 466 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))) | 
| 34 | 33 | ralrimivva 3202 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏 ∈ 𝐵 (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))) | 
| 35 | 18, 18, 19, 8, 20, 20 | islmhm 21026 | . . 3 ⊢ (𝐹 ∈ (𝐴 LMHom 𝐴) ↔ ((𝐴 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝐴 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝐴) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏 ∈ 𝐵 (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))))) | 
| 36 | 35 | biimpri 228 | . 2 ⊢ (((𝐴 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝐴 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝐴) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏 ∈ 𝐵 (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏)))) → 𝐹 ∈ (𝐴 LMHom 𝐴)) | 
| 37 | 3, 3, 12, 13, 34, 36 | syl23anc 1379 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐴 LMHom 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 .rcmulr 17298 Scalarcsca 17300 ·𝑠 cvsca 17301 GrpHom cghm 19230 Ringcrg 20230 LModclmod 20858 LMHom clmhm 21018 AssAlgcasa 21870 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-ghm 19231 df-mgp 20138 df-ring 20232 df-lmod 20860 df-lmhm 21021 df-assa 21873 | 
| This theorem is referenced by: assalactf1o 33686 | 
| Copyright terms: Public domain | W3C validator |