| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lactlmhm | Structured version Visualization version GIF version | ||
| Description: In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is a module homomorphism, analogous to ringlghm 20228. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| lactlmhm.b | ⊢ 𝐵 = (Base‘𝐴) |
| lactlmhm.m | ⊢ · = (.r‘𝐴) |
| lactlmhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) |
| lactlmhm.a | ⊢ (𝜑 → 𝐴 ∈ AssAlg) |
| lactlmhm.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| lactlmhm | ⊢ (𝜑 → 𝐹 ∈ (𝐴 LMHom 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lactlmhm.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ AssAlg) | |
| 2 | assalmod 21776 | . . 3 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ LMod) |
| 4 | lactlmhm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) | |
| 5 | assaring 21777 | . . . . 5 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ Ring) | |
| 6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Ring) |
| 7 | lactlmhm.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 8 | lactlmhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 9 | lactlmhm.m | . . . . 5 ⊢ · = (.r‘𝐴) | |
| 10 | 8, 9 | ringlghm 20228 | . . . 4 ⊢ ((𝐴 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) ∈ (𝐴 GrpHom 𝐴)) |
| 11 | 6, 7, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) ∈ (𝐴 GrpHom 𝐴)) |
| 12 | 4, 11 | eqeltrid 2833 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐴 GrpHom 𝐴)) |
| 13 | eqidd 2731 | . 2 ⊢ (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐴)) | |
| 14 | 1 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝐴 ∈ AssAlg) |
| 15 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝑎 ∈ (Base‘(Scalar‘𝐴))) | |
| 16 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
| 17 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) | |
| 18 | eqid 2730 | . . . . . . 7 ⊢ (Scalar‘𝐴) = (Scalar‘𝐴) | |
| 19 | eqid 2730 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)) | |
| 20 | eqid 2730 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
| 21 | 8, 18, 19, 20, 9 | assaassr 21775 | . . . . . 6 ⊢ ((𝐴 ∈ AssAlg ∧ (𝑎 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝐶 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐶 · 𝑏))) |
| 22 | 14, 15, 16, 17, 21 | syl13anc 1374 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐶 · 𝑏))) |
| 23 | oveq2 7398 | . . . . . 6 ⊢ (𝑥 = (𝑎( ·𝑠 ‘𝐴)𝑏) → (𝐶 · 𝑥) = (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏))) | |
| 24 | 3 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝐴 ∈ LMod) |
| 25 | 8, 18, 20, 19, 24, 15, 17 | lmodvscld 20792 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝑎( ·𝑠 ‘𝐴)𝑏) ∈ 𝐵) |
| 26 | ovexd 7425 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏)) ∈ V) | |
| 27 | 4, 23, 25, 26 | fvmptd3 6994 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏))) |
| 28 | oveq2 7398 | . . . . . . 7 ⊢ (𝑥 = 𝑏 → (𝐶 · 𝑥) = (𝐶 · 𝑏)) | |
| 29 | ovexd 7425 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐶 · 𝑏) ∈ V) | |
| 30 | 4, 28, 17, 29 | fvmptd3 6994 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑏) = (𝐶 · 𝑏)) |
| 31 | 30 | oveq2d 7406 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐶 · 𝑏))) |
| 32 | 22, 27, 31 | 3eqtr4d 2775 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))) |
| 33 | 32 | anasss 466 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))) |
| 34 | 33 | ralrimivva 3181 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏 ∈ 𝐵 (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))) |
| 35 | 18, 18, 19, 8, 20, 20 | islmhm 20941 | . . 3 ⊢ (𝐹 ∈ (𝐴 LMHom 𝐴) ↔ ((𝐴 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝐴 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝐴) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏 ∈ 𝐵 (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))))) |
| 36 | 35 | biimpri 228 | . 2 ⊢ (((𝐴 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝐴 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝐴) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏 ∈ 𝐵 (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏)))) → 𝐹 ∈ (𝐴 LMHom 𝐴)) |
| 37 | 3, 3, 12, 13, 34, 36 | syl23anc 1379 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐴 LMHom 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 .rcmulr 17228 Scalarcsca 17230 ·𝑠 cvsca 17231 GrpHom cghm 19151 Ringcrg 20149 LModclmod 20773 LMHom clmhm 20933 AssAlgcasa 21766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-ghm 19152 df-mgp 20057 df-ring 20151 df-lmod 20775 df-lmhm 20936 df-assa 21769 |
| This theorem is referenced by: assalactf1o 33638 |
| Copyright terms: Public domain | W3C validator |