| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lactlmhm | Structured version Visualization version GIF version | ||
| Description: In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is a module homomorphism, analogous to ringlghm 20223. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| lactlmhm.b | ⊢ 𝐵 = (Base‘𝐴) |
| lactlmhm.m | ⊢ · = (.r‘𝐴) |
| lactlmhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) |
| lactlmhm.a | ⊢ (𝜑 → 𝐴 ∈ AssAlg) |
| lactlmhm.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| lactlmhm | ⊢ (𝜑 → 𝐹 ∈ (𝐴 LMHom 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lactlmhm.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ AssAlg) | |
| 2 | assalmod 21790 | . . 3 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ LMod) |
| 4 | lactlmhm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) | |
| 5 | assaring 21791 | . . . . 5 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ Ring) | |
| 6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Ring) |
| 7 | lactlmhm.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 8 | lactlmhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 9 | lactlmhm.m | . . . . 5 ⊢ · = (.r‘𝐴) | |
| 10 | 8, 9 | ringlghm 20223 | . . . 4 ⊢ ((𝐴 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) ∈ (𝐴 GrpHom 𝐴)) |
| 11 | 6, 7, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) ∈ (𝐴 GrpHom 𝐴)) |
| 12 | 4, 11 | eqeltrid 2833 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐴 GrpHom 𝐴)) |
| 13 | eqidd 2731 | . 2 ⊢ (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐴)) | |
| 14 | 1 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝐴 ∈ AssAlg) |
| 15 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝑎 ∈ (Base‘(Scalar‘𝐴))) | |
| 16 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
| 17 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) | |
| 18 | eqid 2730 | . . . . . . 7 ⊢ (Scalar‘𝐴) = (Scalar‘𝐴) | |
| 19 | eqid 2730 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)) | |
| 20 | eqid 2730 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
| 21 | 8, 18, 19, 20, 9 | assaassr 21789 | . . . . . 6 ⊢ ((𝐴 ∈ AssAlg ∧ (𝑎 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝐶 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐶 · 𝑏))) |
| 22 | 14, 15, 16, 17, 21 | syl13anc 1374 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐶 · 𝑏))) |
| 23 | oveq2 7349 | . . . . . 6 ⊢ (𝑥 = (𝑎( ·𝑠 ‘𝐴)𝑏) → (𝐶 · 𝑥) = (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏))) | |
| 24 | 3 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝐴 ∈ LMod) |
| 25 | 8, 18, 20, 19, 24, 15, 17 | lmodvscld 20805 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝑎( ·𝑠 ‘𝐴)𝑏) ∈ 𝐵) |
| 26 | ovexd 7376 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏)) ∈ V) | |
| 27 | 4, 23, 25, 26 | fvmptd3 6947 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏))) |
| 28 | oveq2 7349 | . . . . . . 7 ⊢ (𝑥 = 𝑏 → (𝐶 · 𝑥) = (𝐶 · 𝑏)) | |
| 29 | ovexd 7376 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐶 · 𝑏) ∈ V) | |
| 30 | 4, 28, 17, 29 | fvmptd3 6947 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑏) = (𝐶 · 𝑏)) |
| 31 | 30 | oveq2d 7357 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐶 · 𝑏))) |
| 32 | 22, 27, 31 | 3eqtr4d 2775 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))) |
| 33 | 32 | anasss 466 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))) |
| 34 | 33 | ralrimivva 3173 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏 ∈ 𝐵 (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))) |
| 35 | 18, 18, 19, 8, 20, 20 | islmhm 20954 | . . 3 ⊢ (𝐹 ∈ (𝐴 LMHom 𝐴) ↔ ((𝐴 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝐴 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝐴) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏 ∈ 𝐵 (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))))) |
| 36 | 35 | biimpri 228 | . 2 ⊢ (((𝐴 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝐴 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝐴) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏 ∈ 𝐵 (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏)))) → 𝐹 ∈ (𝐴 LMHom 𝐴)) |
| 37 | 3, 3, 12, 13, 34, 36 | syl23anc 1379 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐴 LMHom 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∀wral 3045 Vcvv 3434 ↦ cmpt 5170 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 .rcmulr 17154 Scalarcsca 17156 ·𝑠 cvsca 17157 GrpHom cghm 19117 Ringcrg 20144 LModclmod 20786 LMHom clmhm 20946 AssAlgcasa 21780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-plusg 17166 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-ghm 19118 df-mgp 20052 df-ring 20146 df-lmod 20788 df-lmhm 20949 df-assa 21783 |
| This theorem is referenced by: assalactf1o 33638 |
| Copyright terms: Public domain | W3C validator |