![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lactlmhm | Structured version Visualization version GIF version |
Description: In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is a module homomorphism, analogous to ringlghm 20335. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
Ref | Expression |
---|---|
lactlmhm.b | ⊢ 𝐵 = (Base‘𝐴) |
lactlmhm.m | ⊢ · = (.r‘𝐴) |
lactlmhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) |
lactlmhm.a | ⊢ (𝜑 → 𝐴 ∈ AssAlg) |
lactlmhm.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
lactlmhm | ⊢ (𝜑 → 𝐹 ∈ (𝐴 LMHom 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lactlmhm.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ AssAlg) | |
2 | assalmod 21903 | . . 3 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ LMod) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ LMod) |
4 | lactlmhm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) | |
5 | assaring 21904 | . . . . 5 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ Ring) | |
6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Ring) |
7 | lactlmhm.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
8 | lactlmhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
9 | lactlmhm.m | . . . . 5 ⊢ · = (.r‘𝐴) | |
10 | 8, 9 | ringlghm 20335 | . . . 4 ⊢ ((𝐴 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) ∈ (𝐴 GrpHom 𝐴)) |
11 | 6, 7, 10 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) ∈ (𝐴 GrpHom 𝐴)) |
12 | 4, 11 | eqeltrid 2848 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐴 GrpHom 𝐴)) |
13 | eqidd 2741 | . 2 ⊢ (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐴)) | |
14 | 1 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝐴 ∈ AssAlg) |
15 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝑎 ∈ (Base‘(Scalar‘𝐴))) | |
16 | 7 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
17 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) | |
18 | eqid 2740 | . . . . . . 7 ⊢ (Scalar‘𝐴) = (Scalar‘𝐴) | |
19 | eqid 2740 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)) | |
20 | eqid 2740 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
21 | 8, 18, 19, 20, 9 | assaassr 21902 | . . . . . 6 ⊢ ((𝐴 ∈ AssAlg ∧ (𝑎 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝐶 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐶 · 𝑏))) |
22 | 14, 15, 16, 17, 21 | syl13anc 1372 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐶 · 𝑏))) |
23 | oveq2 7456 | . . . . . 6 ⊢ (𝑥 = (𝑎( ·𝑠 ‘𝐴)𝑏) → (𝐶 · 𝑥) = (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏))) | |
24 | 3 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → 𝐴 ∈ LMod) |
25 | 8, 18, 20, 19, 24, 15, 17 | lmodvscld 20899 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝑎( ·𝑠 ‘𝐴)𝑏) ∈ 𝐵) |
26 | ovexd 7483 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏)) ∈ V) | |
27 | 4, 23, 25, 26 | fvmptd3 7052 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝐶 · (𝑎( ·𝑠 ‘𝐴)𝑏))) |
28 | oveq2 7456 | . . . . . . 7 ⊢ (𝑥 = 𝑏 → (𝐶 · 𝑥) = (𝐶 · 𝑏)) | |
29 | ovexd 7483 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐶 · 𝑏) ∈ V) | |
30 | 4, 28, 17, 29 | fvmptd3 7052 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑏) = (𝐶 · 𝑏)) |
31 | 30 | oveq2d 7464 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐶 · 𝑏))) |
32 | 22, 27, 31 | 3eqtr4d 2790 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (Base‘(Scalar‘𝐴))) ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))) |
33 | 32 | anasss 466 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))) |
34 | 33 | ralrimivva 3208 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏 ∈ 𝐵 (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))) |
35 | 18, 18, 19, 8, 20, 20 | islmhm 21049 | . . 3 ⊢ (𝐹 ∈ (𝐴 LMHom 𝐴) ↔ ((𝐴 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝐴 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝐴) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏 ∈ 𝐵 (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏))))) |
36 | 35 | biimpri 228 | . 2 ⊢ (((𝐴 ∈ LMod ∧ 𝐴 ∈ LMod) ∧ (𝐹 ∈ (𝐴 GrpHom 𝐴) ∧ (Scalar‘𝐴) = (Scalar‘𝐴) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝐴))∀𝑏 ∈ 𝐵 (𝐹‘(𝑎( ·𝑠 ‘𝐴)𝑏)) = (𝑎( ·𝑠 ‘𝐴)(𝐹‘𝑏)))) → 𝐹 ∈ (𝐴 LMHom 𝐴)) |
37 | 3, 3, 12, 13, 34, 36 | syl23anc 1377 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐴 LMHom 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 Scalarcsca 17314 ·𝑠 cvsca 17315 GrpHom cghm 19252 Ringcrg 20260 LModclmod 20880 LMHom clmhm 21041 AssAlgcasa 21893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-ghm 19253 df-mgp 20162 df-ring 20262 df-lmod 20882 df-lmhm 21044 df-assa 21896 |
This theorem is referenced by: assalactf1o 33648 |
Copyright terms: Public domain | W3C validator |