![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmat22e11 | Structured version Visualization version GIF version |
Description: Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
Ref | Expression |
---|---|
lmat22.m | ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) |
lmat22.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
lmat22.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
lmat22.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
lmat22.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
Ref | Expression |
---|---|
lmat22e11 | ⊢ (𝜑 → (1𝑀1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmat22.m | . . 3 ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) | |
2 | 2nn 12226 | . . . 4 ⊢ 2 ∈ ℕ | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ∈ ℕ) |
4 | lmat22.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | lmat22.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
6 | 4, 5 | s2cld 14760 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑉) |
7 | lmat22.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
8 | lmat22.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
9 | 7, 8 | s2cld 14760 | . . . 4 ⊢ (𝜑 → 〈“𝐶𝐷”〉 ∈ Word 𝑉) |
10 | 6, 9 | s2cld 14760 | . . 3 ⊢ (𝜑 → 〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉 ∈ Word Word 𝑉) |
11 | s2len 14778 | . . . 4 ⊢ (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2 | |
12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2) |
13 | 1, 4, 5, 7, 8 | lmat22lem 32398 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
14 | 2eluzge1 12819 | . . . . 5 ⊢ 2 ∈ (ℤ≥‘1) | |
15 | eluzfz1 13448 | . . . . 5 ⊢ (2 ∈ (ℤ≥‘1) → 1 ∈ (1...2)) | |
16 | 14, 15 | ax-mp 5 | . . . 4 ⊢ 1 ∈ (1...2) |
17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ (1...2)) |
18 | 1, 3, 10, 12, 13, 17, 17 | lmatfval 32395 | . 2 ⊢ (𝜑 → (1𝑀1) = ((〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘(1 − 1))‘(1 − 1))) |
19 | 1m1e0 12225 | . . . . 5 ⊢ (1 − 1) = 0 | |
20 | 19 | fveq2i 6845 | . . . 4 ⊢ (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘(1 − 1)) = (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0) |
21 | s2fv0 14776 | . . . . 5 ⊢ (〈“𝐴𝐵”〉 ∈ Word 𝑉 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0) = 〈“𝐴𝐵”〉) | |
22 | 6, 21 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0) = 〈“𝐴𝐵”〉) |
23 | 20, 22 | eqtrid 2788 | . . 3 ⊢ (𝜑 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘(1 − 1)) = 〈“𝐴𝐵”〉) |
24 | 19 | a1i 11 | . . 3 ⊢ (𝜑 → (1 − 1) = 0) |
25 | 23, 24 | fveq12d 6849 | . 2 ⊢ (𝜑 → ((〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘(1 − 1))‘(1 − 1)) = (〈“𝐴𝐵”〉‘0)) |
26 | s2fv0 14776 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (〈“𝐴𝐵”〉‘0) = 𝐴) | |
27 | 4, 26 | syl 17 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵”〉‘0) = 𝐴) |
28 | 18, 25, 27 | 3eqtrd 2780 | 1 ⊢ (𝜑 → (1𝑀1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6496 (class class class)co 7357 0cc0 11051 1c1 11052 − cmin 11385 ℕcn 12153 2c2 12208 ℤ≥cuz 12763 ...cfz 13424 ♯chash 14230 Word cword 14402 〈“cs2 14730 litMatclmat 32392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-fzo 13568 df-hash 14231 df-word 14403 df-concat 14459 df-s1 14484 df-s2 14737 df-lmat 32393 |
This theorem is referenced by: lmat22det 32403 |
Copyright terms: Public domain | W3C validator |