Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmat22e11 | Structured version Visualization version GIF version |
Description: Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
Ref | Expression |
---|---|
lmat22.m | ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) |
lmat22.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
lmat22.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
lmat22.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
lmat22.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
Ref | Expression |
---|---|
lmat22e11 | ⊢ (𝜑 → (1𝑀1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmat22.m | . . 3 ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) | |
2 | 2nn 11927 | . . . 4 ⊢ 2 ∈ ℕ | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 2 ∈ ℕ) |
4 | lmat22.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | lmat22.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
6 | 4, 5 | s2cld 14460 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑉) |
7 | lmat22.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
8 | lmat22.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
9 | 7, 8 | s2cld 14460 | . . . 4 ⊢ (𝜑 → 〈“𝐶𝐷”〉 ∈ Word 𝑉) |
10 | 6, 9 | s2cld 14460 | . . 3 ⊢ (𝜑 → 〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉 ∈ Word Word 𝑉) |
11 | s2len 14478 | . . . 4 ⊢ (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2 | |
12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2) |
13 | 1, 4, 5, 7, 8 | lmat22lem 31505 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
14 | 2eluzge1 12514 | . . . . 5 ⊢ 2 ∈ (ℤ≥‘1) | |
15 | eluzfz1 13143 | . . . . 5 ⊢ (2 ∈ (ℤ≥‘1) → 1 ∈ (1...2)) | |
16 | 14, 15 | ax-mp 5 | . . . 4 ⊢ 1 ∈ (1...2) |
17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ (1...2)) |
18 | 1, 3, 10, 12, 13, 17, 17 | lmatfval 31502 | . 2 ⊢ (𝜑 → (1𝑀1) = ((〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘(1 − 1))‘(1 − 1))) |
19 | 1m1e0 11926 | . . . . 5 ⊢ (1 − 1) = 0 | |
20 | 19 | fveq2i 6738 | . . . 4 ⊢ (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘(1 − 1)) = (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0) |
21 | s2fv0 14476 | . . . . 5 ⊢ (〈“𝐴𝐵”〉 ∈ Word 𝑉 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0) = 〈“𝐴𝐵”〉) | |
22 | 6, 21 | syl 17 | . . . 4 ⊢ (𝜑 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0) = 〈“𝐴𝐵”〉) |
23 | 20, 22 | syl5eq 2791 | . . 3 ⊢ (𝜑 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘(1 − 1)) = 〈“𝐴𝐵”〉) |
24 | 19 | a1i 11 | . . 3 ⊢ (𝜑 → (1 − 1) = 0) |
25 | 23, 24 | fveq12d 6742 | . 2 ⊢ (𝜑 → ((〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘(1 − 1))‘(1 − 1)) = (〈“𝐴𝐵”〉‘0)) |
26 | s2fv0 14476 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (〈“𝐴𝐵”〉‘0) = 𝐴) | |
27 | 4, 26 | syl 17 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵”〉‘0) = 𝐴) |
28 | 18, 25, 27 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (1𝑀1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2111 ‘cfv 6397 (class class class)co 7231 0cc0 10753 1c1 10754 − cmin 11086 ℕcn 11854 2c2 11909 ℤ≥cuz 12462 ...cfz 13119 ♯chash 13920 Word cword 14093 〈“cs2 14430 litMatclmat 31499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-int 4874 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-1st 7779 df-2nd 7780 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-1o 8222 df-er 8411 df-en 8647 df-dom 8648 df-sdom 8649 df-fin 8650 df-card 9579 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-2 11917 df-n0 12115 df-z 12201 df-uz 12463 df-fz 13120 df-fzo 13263 df-hash 13921 df-word 14094 df-concat 14150 df-s1 14177 df-s2 14437 df-lmat 31500 |
This theorem is referenced by: lmat22det 31510 |
Copyright terms: Public domain | W3C validator |