| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmat22det | Structured version Visualization version GIF version | ||
| Description: The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.) |
| Ref | Expression |
|---|---|
| lmat22.m | ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) |
| lmat22.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| lmat22.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| lmat22.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| lmat22.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| lmat22det.t | ⊢ · = (.r‘𝑅) |
| lmat22det.s | ⊢ − = (-g‘𝑅) |
| lmat22det.v | ⊢ 𝑉 = (Base‘𝑅) |
| lmat22det.j | ⊢ 𝐽 = ((1...2) maDet 𝑅) |
| lmat22det.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| lmat22det | ⊢ (𝜑 → (𝐽‘𝑀) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmat22det.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | lmat22.m | . . . 4 ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) | |
| 3 | 2nn 12266 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ∈ ℕ) |
| 5 | lmat22.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | lmat22.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 7 | 5, 6 | s2cld 14844 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑉) |
| 8 | lmat22.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 9 | lmat22.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 10 | 8, 9 | s2cld 14844 | . . . . 5 ⊢ (𝜑 → 〈“𝐶𝐷”〉 ∈ Word 𝑉) |
| 11 | 7, 10 | s2cld 14844 | . . . 4 ⊢ (𝜑 → 〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉 ∈ Word Word 𝑉) |
| 12 | s2len 14862 | . . . . 5 ⊢ (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2 | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2) |
| 14 | 2, 5, 6, 8, 9 | lmat22lem 33814 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
| 15 | lmat22det.v | . . . 4 ⊢ 𝑉 = (Base‘𝑅) | |
| 16 | eqid 2730 | . . . 4 ⊢ ((1...2) Mat 𝑅) = ((1...2) Mat 𝑅) | |
| 17 | eqid 2730 | . . . 4 ⊢ (Base‘((1...2) Mat 𝑅)) = (Base‘((1...2) Mat 𝑅)) | |
| 18 | 2, 4, 11, 13, 14, 15, 16, 17, 1 | lmatcl 33813 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (Base‘((1...2) Mat 𝑅))) |
| 19 | 2z 12572 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 20 | fzval3 13702 | . . . . . 6 ⊢ (2 ∈ ℤ → (1...2) = (1..^(2 + 1))) | |
| 21 | 19, 20 | ax-mp 5 | . . . . 5 ⊢ (1...2) = (1..^(2 + 1)) |
| 22 | 2p1e3 12330 | . . . . . 6 ⊢ (2 + 1) = 3 | |
| 23 | 22 | oveq2i 7401 | . . . . 5 ⊢ (1..^(2 + 1)) = (1..^3) |
| 24 | fzo13pr 13717 | . . . . 5 ⊢ (1..^3) = {1, 2} | |
| 25 | 21, 23, 24 | 3eqtri 2757 | . . . 4 ⊢ (1...2) = {1, 2} |
| 26 | lmat22det.j | . . . 4 ⊢ 𝐽 = ((1...2) maDet 𝑅) | |
| 27 | lmat22det.s | . . . 4 ⊢ − = (-g‘𝑅) | |
| 28 | lmat22det.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 29 | 25, 26, 16, 17, 27, 28 | m2detleib 22525 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (Base‘((1...2) Mat 𝑅))) → (𝐽‘𝑀) = (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2)))) |
| 30 | 1, 18, 29 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐽‘𝑀) = (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2)))) |
| 31 | 2, 5, 6, 8, 9 | lmat22e11 33815 | . . . 4 ⊢ (𝜑 → (1𝑀1) = 𝐴) |
| 32 | 2, 5, 6, 8, 9 | lmat22e22 33818 | . . . 4 ⊢ (𝜑 → (2𝑀2) = 𝐷) |
| 33 | 31, 32 | oveq12d 7408 | . . 3 ⊢ (𝜑 → ((1𝑀1) · (2𝑀2)) = (𝐴 · 𝐷)) |
| 34 | 2, 5, 6, 8, 9 | lmat22e21 33817 | . . . 4 ⊢ (𝜑 → (2𝑀1) = 𝐶) |
| 35 | 2, 5, 6, 8, 9 | lmat22e12 33816 | . . . 4 ⊢ (𝜑 → (1𝑀2) = 𝐵) |
| 36 | 34, 35 | oveq12d 7408 | . . 3 ⊢ (𝜑 → ((2𝑀1) · (1𝑀2)) = (𝐶 · 𝐵)) |
| 37 | 33, 36 | oveq12d 7408 | . 2 ⊢ (𝜑 → (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2))) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) |
| 38 | 30, 37 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐽‘𝑀) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cpr 4594 ‘cfv 6514 (class class class)co 7390 1c1 11076 + caddc 11078 ℕcn 12193 2c2 12248 3c3 12249 ℤcz 12536 ...cfz 13475 ..^cfzo 13622 ♯chash 14302 Word cword 14485 〈“cs2 14814 Basecbs 17186 .rcmulr 17228 -gcsg 18874 Ringcrg 20149 Mat cmat 22301 maDet cmdat 22478 litMatclmat 33808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-word 14486 df-lsw 14535 df-concat 14543 df-s1 14568 df-substr 14613 df-pfx 14643 df-splice 14722 df-reverse 14731 df-s2 14821 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-efmnd 18803 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-gim 19198 df-cntz 19256 df-oppg 19285 df-symg 19307 df-pmtr 19379 df-psgn 19428 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-sra 21087 df-rgmod 21088 df-cnfld 21272 df-zring 21364 df-zrh 21420 df-dsmm 21648 df-frlm 21663 df-mat 22302 df-mdet 22479 df-lmat 33809 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |