Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmat22det Structured version   Visualization version   GIF version

Theorem lmat22det 31175
Description: The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.)
Hypotheses
Ref Expression
lmat22.m 𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)
lmat22.a (𝜑𝐴𝑉)
lmat22.b (𝜑𝐵𝑉)
lmat22.c (𝜑𝐶𝑉)
lmat22.d (𝜑𝐷𝑉)
lmat22det.t · = (.r𝑅)
lmat22det.s = (-g𝑅)
lmat22det.v 𝑉 = (Base‘𝑅)
lmat22det.j 𝐽 = ((1...2) maDet 𝑅)
lmat22det.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
lmat22det (𝜑 → (𝐽𝑀) = ((𝐴 · 𝐷) (𝐶 · 𝐵)))

Proof of Theorem lmat22det
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 lmat22det.r . . 3 (𝜑𝑅 ∈ Ring)
2 lmat22.m . . . 4 𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)
3 2nn 11698 . . . . 5 2 ∈ ℕ
43a1i 11 . . . 4 (𝜑 → 2 ∈ ℕ)
5 lmat22.a . . . . . 6 (𝜑𝐴𝑉)
6 lmat22.b . . . . . 6 (𝜑𝐵𝑉)
75, 6s2cld 14224 . . . . 5 (𝜑 → ⟨“𝐴𝐵”⟩ ∈ Word 𝑉)
8 lmat22.c . . . . . 6 (𝜑𝐶𝑉)
9 lmat22.d . . . . . 6 (𝜑𝐷𝑉)
108, 9s2cld 14224 . . . . 5 (𝜑 → ⟨“𝐶𝐷”⟩ ∈ Word 𝑉)
117, 10s2cld 14224 . . . 4 (𝜑 → ⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩ ∈ Word Word 𝑉)
12 s2len 14242 . . . . 5 (♯‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩) = 2
1312a1i 11 . . . 4 (𝜑 → (♯‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩) = 2)
142, 5, 6, 8, 9lmat22lem 31170 . . . 4 ((𝜑𝑖 ∈ (0..^2)) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
15 lmat22det.v . . . 4 𝑉 = (Base‘𝑅)
16 eqid 2798 . . . 4 ((1...2) Mat 𝑅) = ((1...2) Mat 𝑅)
17 eqid 2798 . . . 4 (Base‘((1...2) Mat 𝑅)) = (Base‘((1...2) Mat 𝑅))
182, 4, 11, 13, 14, 15, 16, 17, 1lmatcl 31169 . . 3 (𝜑𝑀 ∈ (Base‘((1...2) Mat 𝑅)))
19 2z 12002 . . . . . 6 2 ∈ ℤ
20 fzval3 13101 . . . . . 6 (2 ∈ ℤ → (1...2) = (1..^(2 + 1)))
2119, 20ax-mp 5 . . . . 5 (1...2) = (1..^(2 + 1))
22 2p1e3 11767 . . . . . 6 (2 + 1) = 3
2322oveq2i 7146 . . . . 5 (1..^(2 + 1)) = (1..^3)
24 fzo13pr 13116 . . . . 5 (1..^3) = {1, 2}
2521, 23, 243eqtri 2825 . . . 4 (1...2) = {1, 2}
26 lmat22det.j . . . 4 𝐽 = ((1...2) maDet 𝑅)
27 lmat22det.s . . . 4 = (-g𝑅)
28 lmat22det.t . . . 4 · = (.r𝑅)
2925, 26, 16, 17, 27, 28m2detleib 21236 . . 3 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (Base‘((1...2) Mat 𝑅))) → (𝐽𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
301, 18, 29syl2anc 587 . 2 (𝜑 → (𝐽𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
312, 5, 6, 8, 9lmat22e11 31171 . . . 4 (𝜑 → (1𝑀1) = 𝐴)
322, 5, 6, 8, 9lmat22e22 31174 . . . 4 (𝜑 → (2𝑀2) = 𝐷)
3331, 32oveq12d 7153 . . 3 (𝜑 → ((1𝑀1) · (2𝑀2)) = (𝐴 · 𝐷))
342, 5, 6, 8, 9lmat22e21 31173 . . . 4 (𝜑 → (2𝑀1) = 𝐶)
352, 5, 6, 8, 9lmat22e12 31172 . . . 4 (𝜑 → (1𝑀2) = 𝐵)
3634, 35oveq12d 7153 . . 3 (𝜑 → ((2𝑀1) · (1𝑀2)) = (𝐶 · 𝐵))
3733, 36oveq12d 7153 . 2 (𝜑 → (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))) = ((𝐴 · 𝐷) (𝐶 · 𝐵)))
3830, 37eqtrd 2833 1 (𝜑 → (𝐽𝑀) = ((𝐴 · 𝐷) (𝐶 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  {cpr 4527  cfv 6324  (class class class)co 7135  1c1 10527   + caddc 10529  cn 11625  2c2 11680  3c3 11681  cz 11969  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857  ⟨“cs2 14194  Basecbs 16475  .rcmulr 16558  -gcsg 18097  Ringcrg 19290   Mat cmat 21012   maDet cmdat 21189  litMatclmat 31164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-splice 14103  df-reverse 14112  df-s2 14201  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-efmnd 18026  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-gim 18391  df-cntz 18439  df-oppg 18466  df-symg 18488  df-pmtr 18562  df-psgn 18611  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-rnghom 19463  df-subrg 19526  df-sra 19937  df-rgmod 19938  df-cnfld 20092  df-zring 20164  df-zrh 20197  df-dsmm 20421  df-frlm 20436  df-mat 21013  df-mdet 21190  df-lmat 31165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator