![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmat22det | Structured version Visualization version GIF version |
Description: The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.) |
Ref | Expression |
---|---|
lmat22.m | ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) |
lmat22.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
lmat22.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
lmat22.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
lmat22.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
lmat22det.t | ⊢ · = (.r‘𝑅) |
lmat22det.s | ⊢ − = (-g‘𝑅) |
lmat22det.v | ⊢ 𝑉 = (Base‘𝑅) |
lmat22det.j | ⊢ 𝐽 = ((1...2) maDet 𝑅) |
lmat22det.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
lmat22det | ⊢ (𝜑 → (𝐽‘𝑀) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmat22det.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | lmat22.m | . . . 4 ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) | |
3 | 2nn 12366 | . . . . 5 ⊢ 2 ∈ ℕ | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ∈ ℕ) |
5 | lmat22.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | lmat22.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
7 | 5, 6 | s2cld 14920 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑉) |
8 | lmat22.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
9 | lmat22.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
10 | 8, 9 | s2cld 14920 | . . . . 5 ⊢ (𝜑 → 〈“𝐶𝐷”〉 ∈ Word 𝑉) |
11 | 7, 10 | s2cld 14920 | . . . 4 ⊢ (𝜑 → 〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉 ∈ Word Word 𝑉) |
12 | s2len 14938 | . . . . 5 ⊢ (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2 | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2) |
14 | 2, 5, 6, 8, 9 | lmat22lem 33763 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
15 | lmat22det.v | . . . 4 ⊢ 𝑉 = (Base‘𝑅) | |
16 | eqid 2740 | . . . 4 ⊢ ((1...2) Mat 𝑅) = ((1...2) Mat 𝑅) | |
17 | eqid 2740 | . . . 4 ⊢ (Base‘((1...2) Mat 𝑅)) = (Base‘((1...2) Mat 𝑅)) | |
18 | 2, 4, 11, 13, 14, 15, 16, 17, 1 | lmatcl 33762 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (Base‘((1...2) Mat 𝑅))) |
19 | 2z 12675 | . . . . . 6 ⊢ 2 ∈ ℤ | |
20 | fzval3 13785 | . . . . . 6 ⊢ (2 ∈ ℤ → (1...2) = (1..^(2 + 1))) | |
21 | 19, 20 | ax-mp 5 | . . . . 5 ⊢ (1...2) = (1..^(2 + 1)) |
22 | 2p1e3 12435 | . . . . . 6 ⊢ (2 + 1) = 3 | |
23 | 22 | oveq2i 7459 | . . . . 5 ⊢ (1..^(2 + 1)) = (1..^3) |
24 | fzo13pr 13800 | . . . . 5 ⊢ (1..^3) = {1, 2} | |
25 | 21, 23, 24 | 3eqtri 2772 | . . . 4 ⊢ (1...2) = {1, 2} |
26 | lmat22det.j | . . . 4 ⊢ 𝐽 = ((1...2) maDet 𝑅) | |
27 | lmat22det.s | . . . 4 ⊢ − = (-g‘𝑅) | |
28 | lmat22det.t | . . . 4 ⊢ · = (.r‘𝑅) | |
29 | 25, 26, 16, 17, 27, 28 | m2detleib 22658 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (Base‘((1...2) Mat 𝑅))) → (𝐽‘𝑀) = (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2)))) |
30 | 1, 18, 29 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐽‘𝑀) = (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2)))) |
31 | 2, 5, 6, 8, 9 | lmat22e11 33764 | . . . 4 ⊢ (𝜑 → (1𝑀1) = 𝐴) |
32 | 2, 5, 6, 8, 9 | lmat22e22 33767 | . . . 4 ⊢ (𝜑 → (2𝑀2) = 𝐷) |
33 | 31, 32 | oveq12d 7466 | . . 3 ⊢ (𝜑 → ((1𝑀1) · (2𝑀2)) = (𝐴 · 𝐷)) |
34 | 2, 5, 6, 8, 9 | lmat22e21 33766 | . . . 4 ⊢ (𝜑 → (2𝑀1) = 𝐶) |
35 | 2, 5, 6, 8, 9 | lmat22e12 33765 | . . . 4 ⊢ (𝜑 → (1𝑀2) = 𝐵) |
36 | 34, 35 | oveq12d 7466 | . . 3 ⊢ (𝜑 → ((2𝑀1) · (1𝑀2)) = (𝐶 · 𝐵)) |
37 | 33, 36 | oveq12d 7466 | . 2 ⊢ (𝜑 → (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2))) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) |
38 | 30, 37 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝐽‘𝑀) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {cpr 4650 ‘cfv 6573 (class class class)co 7448 1c1 11185 + caddc 11187 ℕcn 12293 2c2 12348 3c3 12349 ℤcz 12639 ...cfz 13567 ..^cfzo 13711 ♯chash 14379 Word cword 14562 〈“cs2 14890 Basecbs 17258 .rcmulr 17312 -gcsg 18975 Ringcrg 20260 Mat cmat 22432 maDet cmdat 22611 litMatclmat 33757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-xor 1509 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-word 14563 df-lsw 14611 df-concat 14619 df-s1 14644 df-substr 14689 df-pfx 14719 df-splice 14798 df-reverse 14807 df-s2 14897 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-efmnd 18904 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-gim 19299 df-cntz 19357 df-oppg 19386 df-symg 19411 df-pmtr 19484 df-psgn 19533 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-sra 21195 df-rgmod 21196 df-cnfld 21388 df-zring 21481 df-zrh 21537 df-dsmm 21775 df-frlm 21790 df-mat 22433 df-mdet 22612 df-lmat 33758 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |