Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmat22det | Structured version Visualization version GIF version |
Description: The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.) |
Ref | Expression |
---|---|
lmat22.m | ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) |
lmat22.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
lmat22.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
lmat22.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
lmat22.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
lmat22det.t | ⊢ · = (.r‘𝑅) |
lmat22det.s | ⊢ − = (-g‘𝑅) |
lmat22det.v | ⊢ 𝑉 = (Base‘𝑅) |
lmat22det.j | ⊢ 𝐽 = ((1...2) maDet 𝑅) |
lmat22det.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
lmat22det | ⊢ (𝜑 → (𝐽‘𝑀) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmat22det.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | lmat22.m | . . . 4 ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) | |
3 | 2nn 12046 | . . . . 5 ⊢ 2 ∈ ℕ | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ∈ ℕ) |
5 | lmat22.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | lmat22.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
7 | 5, 6 | s2cld 14584 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑉) |
8 | lmat22.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
9 | lmat22.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
10 | 8, 9 | s2cld 14584 | . . . . 5 ⊢ (𝜑 → 〈“𝐶𝐷”〉 ∈ Word 𝑉) |
11 | 7, 10 | s2cld 14584 | . . . 4 ⊢ (𝜑 → 〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉 ∈ Word Word 𝑉) |
12 | s2len 14602 | . . . . 5 ⊢ (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2 | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2) |
14 | 2, 5, 6, 8, 9 | lmat22lem 31767 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
15 | lmat22det.v | . . . 4 ⊢ 𝑉 = (Base‘𝑅) | |
16 | eqid 2738 | . . . 4 ⊢ ((1...2) Mat 𝑅) = ((1...2) Mat 𝑅) | |
17 | eqid 2738 | . . . 4 ⊢ (Base‘((1...2) Mat 𝑅)) = (Base‘((1...2) Mat 𝑅)) | |
18 | 2, 4, 11, 13, 14, 15, 16, 17, 1 | lmatcl 31766 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (Base‘((1...2) Mat 𝑅))) |
19 | 2z 12352 | . . . . . 6 ⊢ 2 ∈ ℤ | |
20 | fzval3 13456 | . . . . . 6 ⊢ (2 ∈ ℤ → (1...2) = (1..^(2 + 1))) | |
21 | 19, 20 | ax-mp 5 | . . . . 5 ⊢ (1...2) = (1..^(2 + 1)) |
22 | 2p1e3 12115 | . . . . . 6 ⊢ (2 + 1) = 3 | |
23 | 22 | oveq2i 7286 | . . . . 5 ⊢ (1..^(2 + 1)) = (1..^3) |
24 | fzo13pr 13471 | . . . . 5 ⊢ (1..^3) = {1, 2} | |
25 | 21, 23, 24 | 3eqtri 2770 | . . . 4 ⊢ (1...2) = {1, 2} |
26 | lmat22det.j | . . . 4 ⊢ 𝐽 = ((1...2) maDet 𝑅) | |
27 | lmat22det.s | . . . 4 ⊢ − = (-g‘𝑅) | |
28 | lmat22det.t | . . . 4 ⊢ · = (.r‘𝑅) | |
29 | 25, 26, 16, 17, 27, 28 | m2detleib 21780 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (Base‘((1...2) Mat 𝑅))) → (𝐽‘𝑀) = (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2)))) |
30 | 1, 18, 29 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐽‘𝑀) = (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2)))) |
31 | 2, 5, 6, 8, 9 | lmat22e11 31768 | . . . 4 ⊢ (𝜑 → (1𝑀1) = 𝐴) |
32 | 2, 5, 6, 8, 9 | lmat22e22 31771 | . . . 4 ⊢ (𝜑 → (2𝑀2) = 𝐷) |
33 | 31, 32 | oveq12d 7293 | . . 3 ⊢ (𝜑 → ((1𝑀1) · (2𝑀2)) = (𝐴 · 𝐷)) |
34 | 2, 5, 6, 8, 9 | lmat22e21 31770 | . . . 4 ⊢ (𝜑 → (2𝑀1) = 𝐶) |
35 | 2, 5, 6, 8, 9 | lmat22e12 31769 | . . . 4 ⊢ (𝜑 → (1𝑀2) = 𝐵) |
36 | 34, 35 | oveq12d 7293 | . . 3 ⊢ (𝜑 → ((2𝑀1) · (1𝑀2)) = (𝐶 · 𝐵)) |
37 | 33, 36 | oveq12d 7293 | . 2 ⊢ (𝜑 → (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2))) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) |
38 | 30, 37 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐽‘𝑀) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {cpr 4563 ‘cfv 6433 (class class class)co 7275 1c1 10872 + caddc 10874 ℕcn 11973 2c2 12028 3c3 12029 ℤcz 12319 ...cfz 13239 ..^cfzo 13382 ♯chash 14044 Word cword 14217 〈“cs2 14554 Basecbs 16912 .rcmulr 16963 -gcsg 18579 Ringcrg 19783 Mat cmat 21554 maDet cmdat 21733 litMatclmat 31761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-xor 1507 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-ot 4570 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-oi 9269 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-word 14218 df-lsw 14266 df-concat 14274 df-s1 14301 df-substr 14354 df-pfx 14384 df-splice 14463 df-reverse 14472 df-s2 14561 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-0g 17152 df-gsum 17153 df-prds 17158 df-pws 17160 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-efmnd 18508 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-gim 18875 df-cntz 18923 df-oppg 18950 df-symg 18975 df-pmtr 19050 df-psgn 19099 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-rnghom 19959 df-subrg 20022 df-sra 20434 df-rgmod 20435 df-cnfld 20598 df-zring 20671 df-zrh 20705 df-dsmm 20939 df-frlm 20954 df-mat 21555 df-mdet 21734 df-lmat 31762 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |