Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmat22det Structured version   Visualization version   GIF version

Theorem lmat22det 33812
Description: The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.)
Hypotheses
Ref Expression
lmat22.m 𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)
lmat22.a (𝜑𝐴𝑉)
lmat22.b (𝜑𝐵𝑉)
lmat22.c (𝜑𝐶𝑉)
lmat22.d (𝜑𝐷𝑉)
lmat22det.t · = (.r𝑅)
lmat22det.s = (-g𝑅)
lmat22det.v 𝑉 = (Base‘𝑅)
lmat22det.j 𝐽 = ((1...2) maDet 𝑅)
lmat22det.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
lmat22det (𝜑 → (𝐽𝑀) = ((𝐴 · 𝐷) (𝐶 · 𝐵)))

Proof of Theorem lmat22det
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 lmat22det.r . . 3 (𝜑𝑅 ∈ Ring)
2 lmat22.m . . . 4 𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)
3 2nn 12259 . . . . 5 2 ∈ ℕ
43a1i 11 . . . 4 (𝜑 → 2 ∈ ℕ)
5 lmat22.a . . . . . 6 (𝜑𝐴𝑉)
6 lmat22.b . . . . . 6 (𝜑𝐵𝑉)
75, 6s2cld 14837 . . . . 5 (𝜑 → ⟨“𝐴𝐵”⟩ ∈ Word 𝑉)
8 lmat22.c . . . . . 6 (𝜑𝐶𝑉)
9 lmat22.d . . . . . 6 (𝜑𝐷𝑉)
108, 9s2cld 14837 . . . . 5 (𝜑 → ⟨“𝐶𝐷”⟩ ∈ Word 𝑉)
117, 10s2cld 14837 . . . 4 (𝜑 → ⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩ ∈ Word Word 𝑉)
12 s2len 14855 . . . . 5 (♯‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩) = 2
1312a1i 11 . . . 4 (𝜑 → (♯‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩) = 2)
142, 5, 6, 8, 9lmat22lem 33807 . . . 4 ((𝜑𝑖 ∈ (0..^2)) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
15 lmat22det.v . . . 4 𝑉 = (Base‘𝑅)
16 eqid 2729 . . . 4 ((1...2) Mat 𝑅) = ((1...2) Mat 𝑅)
17 eqid 2729 . . . 4 (Base‘((1...2) Mat 𝑅)) = (Base‘((1...2) Mat 𝑅))
182, 4, 11, 13, 14, 15, 16, 17, 1lmatcl 33806 . . 3 (𝜑𝑀 ∈ (Base‘((1...2) Mat 𝑅)))
19 2z 12565 . . . . . 6 2 ∈ ℤ
20 fzval3 13695 . . . . . 6 (2 ∈ ℤ → (1...2) = (1..^(2 + 1)))
2119, 20ax-mp 5 . . . . 5 (1...2) = (1..^(2 + 1))
22 2p1e3 12323 . . . . . 6 (2 + 1) = 3
2322oveq2i 7398 . . . . 5 (1..^(2 + 1)) = (1..^3)
24 fzo13pr 13710 . . . . 5 (1..^3) = {1, 2}
2521, 23, 243eqtri 2756 . . . 4 (1...2) = {1, 2}
26 lmat22det.j . . . 4 𝐽 = ((1...2) maDet 𝑅)
27 lmat22det.s . . . 4 = (-g𝑅)
28 lmat22det.t . . . 4 · = (.r𝑅)
2925, 26, 16, 17, 27, 28m2detleib 22518 . . 3 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (Base‘((1...2) Mat 𝑅))) → (𝐽𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
301, 18, 29syl2anc 584 . 2 (𝜑 → (𝐽𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
312, 5, 6, 8, 9lmat22e11 33808 . . . 4 (𝜑 → (1𝑀1) = 𝐴)
322, 5, 6, 8, 9lmat22e22 33811 . . . 4 (𝜑 → (2𝑀2) = 𝐷)
3331, 32oveq12d 7405 . . 3 (𝜑 → ((1𝑀1) · (2𝑀2)) = (𝐴 · 𝐷))
342, 5, 6, 8, 9lmat22e21 33810 . . . 4 (𝜑 → (2𝑀1) = 𝐶)
352, 5, 6, 8, 9lmat22e12 33809 . . . 4 (𝜑 → (1𝑀2) = 𝐵)
3634, 35oveq12d 7405 . . 3 (𝜑 → ((2𝑀1) · (1𝑀2)) = (𝐶 · 𝐵))
3733, 36oveq12d 7405 . 2 (𝜑 → (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))) = ((𝐴 · 𝐷) (𝐶 · 𝐵)))
3830, 37eqtrd 2764 1 (𝜑 → (𝐽𝑀) = ((𝐴 · 𝐷) (𝐶 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cpr 4591  cfv 6511  (class class class)co 7387  1c1 11069   + caddc 11071  cn 12186  2c2 12241  3c3 12242  cz 12529  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478  ⟨“cs2 14807  Basecbs 17179  .rcmulr 17221  -gcsg 18867  Ringcrg 20142   Mat cmat 22294   maDet cmdat 22471  litMatclmat 33801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-splice 14715  df-reverse 14724  df-s2 14814  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-efmnd 18796  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-gim 19191  df-cntz 19249  df-oppg 19278  df-symg 19300  df-pmtr 19372  df-psgn 19421  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-sra 21080  df-rgmod 21081  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-dsmm 21641  df-frlm 21656  df-mat 22295  df-mdet 22472  df-lmat 33802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator