Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmat22det Structured version   Visualization version   GIF version

Theorem lmat22det 31087
Description: The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.)
Hypotheses
Ref Expression
lmat22.m 𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)
lmat22.a (𝜑𝐴𝑉)
lmat22.b (𝜑𝐵𝑉)
lmat22.c (𝜑𝐶𝑉)
lmat22.d (𝜑𝐷𝑉)
lmat22det.t · = (.r𝑅)
lmat22det.s = (-g𝑅)
lmat22det.v 𝑉 = (Base‘𝑅)
lmat22det.j 𝐽 = ((1...2) maDet 𝑅)
lmat22det.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
lmat22det (𝜑 → (𝐽𝑀) = ((𝐴 · 𝐷) (𝐶 · 𝐵)))

Proof of Theorem lmat22det
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 lmat22det.r . . 3 (𝜑𝑅 ∈ Ring)
2 lmat22.m . . . 4 𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)
3 2nn 11711 . . . . 5 2 ∈ ℕ
43a1i 11 . . . 4 (𝜑 → 2 ∈ ℕ)
5 lmat22.a . . . . . 6 (𝜑𝐴𝑉)
6 lmat22.b . . . . . 6 (𝜑𝐵𝑉)
75, 6s2cld 14233 . . . . 5 (𝜑 → ⟨“𝐴𝐵”⟩ ∈ Word 𝑉)
8 lmat22.c . . . . . 6 (𝜑𝐶𝑉)
9 lmat22.d . . . . . 6 (𝜑𝐷𝑉)
108, 9s2cld 14233 . . . . 5 (𝜑 → ⟨“𝐶𝐷”⟩ ∈ Word 𝑉)
117, 10s2cld 14233 . . . 4 (𝜑 → ⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩ ∈ Word Word 𝑉)
12 s2len 14251 . . . . 5 (♯‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩) = 2
1312a1i 11 . . . 4 (𝜑 → (♯‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩) = 2)
142, 5, 6, 8, 9lmat22lem 31082 . . . 4 ((𝜑𝑖 ∈ (0..^2)) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
15 lmat22det.v . . . 4 𝑉 = (Base‘𝑅)
16 eqid 2821 . . . 4 ((1...2) Mat 𝑅) = ((1...2) Mat 𝑅)
17 eqid 2821 . . . 4 (Base‘((1...2) Mat 𝑅)) = (Base‘((1...2) Mat 𝑅))
182, 4, 11, 13, 14, 15, 16, 17, 1lmatcl 31081 . . 3 (𝜑𝑀 ∈ (Base‘((1...2) Mat 𝑅)))
19 2z 12015 . . . . . 6 2 ∈ ℤ
20 fzval3 13107 . . . . . 6 (2 ∈ ℤ → (1...2) = (1..^(2 + 1)))
2119, 20ax-mp 5 . . . . 5 (1...2) = (1..^(2 + 1))
22 2p1e3 11780 . . . . . 6 (2 + 1) = 3
2322oveq2i 7167 . . . . 5 (1..^(2 + 1)) = (1..^3)
24 fzo13pr 13122 . . . . 5 (1..^3) = {1, 2}
2521, 23, 243eqtri 2848 . . . 4 (1...2) = {1, 2}
26 lmat22det.j . . . 4 𝐽 = ((1...2) maDet 𝑅)
27 lmat22det.s . . . 4 = (-g𝑅)
28 lmat22det.t . . . 4 · = (.r𝑅)
2925, 26, 16, 17, 27, 28m2detleib 21240 . . 3 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (Base‘((1...2) Mat 𝑅))) → (𝐽𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
301, 18, 29syl2anc 586 . 2 (𝜑 → (𝐽𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
312, 5, 6, 8, 9lmat22e11 31083 . . . 4 (𝜑 → (1𝑀1) = 𝐴)
322, 5, 6, 8, 9lmat22e22 31086 . . . 4 (𝜑 → (2𝑀2) = 𝐷)
3331, 32oveq12d 7174 . . 3 (𝜑 → ((1𝑀1) · (2𝑀2)) = (𝐴 · 𝐷))
342, 5, 6, 8, 9lmat22e21 31085 . . . 4 (𝜑 → (2𝑀1) = 𝐶)
352, 5, 6, 8, 9lmat22e12 31084 . . . 4 (𝜑 → (1𝑀2) = 𝐵)
3634, 35oveq12d 7174 . . 3 (𝜑 → ((2𝑀1) · (1𝑀2)) = (𝐶 · 𝐵))
3733, 36oveq12d 7174 . 2 (𝜑 → (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))) = ((𝐴 · 𝐷) (𝐶 · 𝐵)))
3830, 37eqtrd 2856 1 (𝜑 → (𝐽𝑀) = ((𝐴 · 𝐷) (𝐶 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  {cpr 4569  cfv 6355  (class class class)co 7156  1c1 10538   + caddc 10540  cn 11638  2c2 11693  3c3 11694  cz 11982  ...cfz 12893  ..^cfzo 13034  chash 13691  Word cword 13862  ⟨“cs2 14203  Basecbs 16483  .rcmulr 16566  -gcsg 18105  Ringcrg 19297   Mat cmat 21016   maDet cmdat 21193  litMatclmat 31076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-xor 1502  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-word 13863  df-lsw 13915  df-concat 13923  df-s1 13950  df-substr 14003  df-pfx 14033  df-splice 14112  df-reverse 14121  df-s2 14210  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-efmnd 18034  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-gim 18399  df-cntz 18447  df-oppg 18474  df-symg 18496  df-pmtr 18570  df-psgn 18619  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-rnghom 19467  df-subrg 19533  df-sra 19944  df-rgmod 19945  df-cnfld 20546  df-zring 20618  df-zrh 20651  df-dsmm 20876  df-frlm 20891  df-mat 21017  df-mdet 21194  df-lmat 31077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator