![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmat22det | Structured version Visualization version GIF version |
Description: The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.) |
Ref | Expression |
---|---|
lmat22.m | β’ π = (litMatββ¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ©) |
lmat22.a | β’ (π β π΄ β π) |
lmat22.b | β’ (π β π΅ β π) |
lmat22.c | β’ (π β πΆ β π) |
lmat22.d | β’ (π β π· β π) |
lmat22det.t | β’ Β· = (.rβπ ) |
lmat22det.s | β’ β = (-gβπ ) |
lmat22det.v | β’ π = (Baseβπ ) |
lmat22det.j | β’ π½ = ((1...2) maDet π ) |
lmat22det.r | β’ (π β π β Ring) |
Ref | Expression |
---|---|
lmat22det | β’ (π β (π½βπ) = ((π΄ Β· π·) β (πΆ Β· π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmat22det.r | . . 3 β’ (π β π β Ring) | |
2 | lmat22.m | . . . 4 β’ π = (litMatββ¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ©) | |
3 | 2nn 12284 | . . . . 5 β’ 2 β β | |
4 | 3 | a1i 11 | . . . 4 β’ (π β 2 β β) |
5 | lmat22.a | . . . . . 6 β’ (π β π΄ β π) | |
6 | lmat22.b | . . . . . 6 β’ (π β π΅ β π) | |
7 | 5, 6 | s2cld 14821 | . . . . 5 β’ (π β β¨βπ΄π΅ββ© β Word π) |
8 | lmat22.c | . . . . . 6 β’ (π β πΆ β π) | |
9 | lmat22.d | . . . . . 6 β’ (π β π· β π) | |
10 | 8, 9 | s2cld 14821 | . . . . 5 β’ (π β β¨βπΆπ·ββ© β Word π) |
11 | 7, 10 | s2cld 14821 | . . . 4 β’ (π β β¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ© β Word Word π) |
12 | s2len 14839 | . . . . 5 β’ (β―ββ¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ©) = 2 | |
13 | 12 | a1i 11 | . . . 4 β’ (π β (β―ββ¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ©) = 2) |
14 | 2, 5, 6, 8, 9 | lmat22lem 32792 | . . . 4 β’ ((π β§ π β (0..^2)) β (β―β(β¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ©βπ)) = 2) |
15 | lmat22det.v | . . . 4 β’ π = (Baseβπ ) | |
16 | eqid 2732 | . . . 4 β’ ((1...2) Mat π ) = ((1...2) Mat π ) | |
17 | eqid 2732 | . . . 4 β’ (Baseβ((1...2) Mat π )) = (Baseβ((1...2) Mat π )) | |
18 | 2, 4, 11, 13, 14, 15, 16, 17, 1 | lmatcl 32791 | . . 3 β’ (π β π β (Baseβ((1...2) Mat π ))) |
19 | 2z 12593 | . . . . . 6 β’ 2 β β€ | |
20 | fzval3 13700 | . . . . . 6 β’ (2 β β€ β (1...2) = (1..^(2 + 1))) | |
21 | 19, 20 | ax-mp 5 | . . . . 5 β’ (1...2) = (1..^(2 + 1)) |
22 | 2p1e3 12353 | . . . . . 6 β’ (2 + 1) = 3 | |
23 | 22 | oveq2i 7419 | . . . . 5 β’ (1..^(2 + 1)) = (1..^3) |
24 | fzo13pr 13715 | . . . . 5 β’ (1..^3) = {1, 2} | |
25 | 21, 23, 24 | 3eqtri 2764 | . . . 4 β’ (1...2) = {1, 2} |
26 | lmat22det.j | . . . 4 β’ π½ = ((1...2) maDet π ) | |
27 | lmat22det.s | . . . 4 β’ β = (-gβπ ) | |
28 | lmat22det.t | . . . 4 β’ Β· = (.rβπ ) | |
29 | 25, 26, 16, 17, 27, 28 | m2detleib 22132 | . . 3 β’ ((π β Ring β§ π β (Baseβ((1...2) Mat π ))) β (π½βπ) = (((1π1) Β· (2π2)) β ((2π1) Β· (1π2)))) |
30 | 1, 18, 29 | syl2anc 584 | . 2 β’ (π β (π½βπ) = (((1π1) Β· (2π2)) β ((2π1) Β· (1π2)))) |
31 | 2, 5, 6, 8, 9 | lmat22e11 32793 | . . . 4 β’ (π β (1π1) = π΄) |
32 | 2, 5, 6, 8, 9 | lmat22e22 32796 | . . . 4 β’ (π β (2π2) = π·) |
33 | 31, 32 | oveq12d 7426 | . . 3 β’ (π β ((1π1) Β· (2π2)) = (π΄ Β· π·)) |
34 | 2, 5, 6, 8, 9 | lmat22e21 32795 | . . . 4 β’ (π β (2π1) = πΆ) |
35 | 2, 5, 6, 8, 9 | lmat22e12 32794 | . . . 4 β’ (π β (1π2) = π΅) |
36 | 34, 35 | oveq12d 7426 | . . 3 β’ (π β ((2π1) Β· (1π2)) = (πΆ Β· π΅)) |
37 | 33, 36 | oveq12d 7426 | . 2 β’ (π β (((1π1) Β· (2π2)) β ((2π1) Β· (1π2))) = ((π΄ Β· π·) β (πΆ Β· π΅))) |
38 | 30, 37 | eqtrd 2772 | 1 β’ (π β (π½βπ) = ((π΄ Β· π·) β (πΆ Β· π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 {cpr 4630 βcfv 6543 (class class class)co 7408 1c1 11110 + caddc 11112 βcn 12211 2c2 12266 3c3 12267 β€cz 12557 ...cfz 13483 ..^cfzo 13626 β―chash 14289 Word cword 14463 β¨βcs2 14791 Basecbs 17143 .rcmulr 17197 -gcsg 18820 Ringcrg 20055 Mat cmat 21906 maDet cmdat 22085 litMatclmat 32786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-xor 1510 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-oadd 8469 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-oi 9504 df-dju 9895 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-xnn0 12544 df-z 12558 df-dec 12677 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-fac 14233 df-bc 14262 df-hash 14290 df-word 14464 df-lsw 14512 df-concat 14520 df-s1 14545 df-substr 14590 df-pfx 14620 df-splice 14699 df-reverse 14708 df-s2 14798 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17386 df-gsum 17387 df-prds 17392 df-pws 17394 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-submnd 18671 df-efmnd 18749 df-grp 18821 df-minusg 18822 df-sbg 18823 df-mulg 18950 df-subg 19002 df-ghm 19089 df-gim 19132 df-cntz 19180 df-oppg 19209 df-symg 19234 df-pmtr 19309 df-psgn 19358 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-rnghom 20250 df-subrg 20316 df-sra 20784 df-rgmod 20785 df-cnfld 20944 df-zring 21017 df-zrh 21052 df-dsmm 21286 df-frlm 21301 df-mat 21907 df-mdet 22086 df-lmat 32787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |