| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmat22det | Structured version Visualization version GIF version | ||
| Description: The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.) |
| Ref | Expression |
|---|---|
| lmat22.m | ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) |
| lmat22.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| lmat22.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| lmat22.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| lmat22.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| lmat22det.t | ⊢ · = (.r‘𝑅) |
| lmat22det.s | ⊢ − = (-g‘𝑅) |
| lmat22det.v | ⊢ 𝑉 = (Base‘𝑅) |
| lmat22det.j | ⊢ 𝐽 = ((1...2) maDet 𝑅) |
| lmat22det.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| lmat22det | ⊢ (𝜑 → (𝐽‘𝑀) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmat22det.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | lmat22.m | . . . 4 ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) | |
| 3 | 2nn 12201 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ∈ ℕ) |
| 5 | lmat22.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | lmat22.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 7 | 5, 6 | s2cld 14778 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑉) |
| 8 | lmat22.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 9 | lmat22.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 10 | 8, 9 | s2cld 14778 | . . . . 5 ⊢ (𝜑 → 〈“𝐶𝐷”〉 ∈ Word 𝑉) |
| 11 | 7, 10 | s2cld 14778 | . . . 4 ⊢ (𝜑 → 〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉 ∈ Word Word 𝑉) |
| 12 | s2len 14796 | . . . . 5 ⊢ (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2 | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2) |
| 14 | 2, 5, 6, 8, 9 | lmat22lem 33790 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
| 15 | lmat22det.v | . . . 4 ⊢ 𝑉 = (Base‘𝑅) | |
| 16 | eqid 2729 | . . . 4 ⊢ ((1...2) Mat 𝑅) = ((1...2) Mat 𝑅) | |
| 17 | eqid 2729 | . . . 4 ⊢ (Base‘((1...2) Mat 𝑅)) = (Base‘((1...2) Mat 𝑅)) | |
| 18 | 2, 4, 11, 13, 14, 15, 16, 17, 1 | lmatcl 33789 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (Base‘((1...2) Mat 𝑅))) |
| 19 | 2z 12507 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 20 | fzval3 13637 | . . . . . 6 ⊢ (2 ∈ ℤ → (1...2) = (1..^(2 + 1))) | |
| 21 | 19, 20 | ax-mp 5 | . . . . 5 ⊢ (1...2) = (1..^(2 + 1)) |
| 22 | 2p1e3 12265 | . . . . . 6 ⊢ (2 + 1) = 3 | |
| 23 | 22 | oveq2i 7360 | . . . . 5 ⊢ (1..^(2 + 1)) = (1..^3) |
| 24 | fzo13pr 13652 | . . . . 5 ⊢ (1..^3) = {1, 2} | |
| 25 | 21, 23, 24 | 3eqtri 2756 | . . . 4 ⊢ (1...2) = {1, 2} |
| 26 | lmat22det.j | . . . 4 ⊢ 𝐽 = ((1...2) maDet 𝑅) | |
| 27 | lmat22det.s | . . . 4 ⊢ − = (-g‘𝑅) | |
| 28 | lmat22det.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 29 | 25, 26, 16, 17, 27, 28 | m2detleib 22516 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (Base‘((1...2) Mat 𝑅))) → (𝐽‘𝑀) = (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2)))) |
| 30 | 1, 18, 29 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐽‘𝑀) = (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2)))) |
| 31 | 2, 5, 6, 8, 9 | lmat22e11 33791 | . . . 4 ⊢ (𝜑 → (1𝑀1) = 𝐴) |
| 32 | 2, 5, 6, 8, 9 | lmat22e22 33794 | . . . 4 ⊢ (𝜑 → (2𝑀2) = 𝐷) |
| 33 | 31, 32 | oveq12d 7367 | . . 3 ⊢ (𝜑 → ((1𝑀1) · (2𝑀2)) = (𝐴 · 𝐷)) |
| 34 | 2, 5, 6, 8, 9 | lmat22e21 33793 | . . . 4 ⊢ (𝜑 → (2𝑀1) = 𝐶) |
| 35 | 2, 5, 6, 8, 9 | lmat22e12 33792 | . . . 4 ⊢ (𝜑 → (1𝑀2) = 𝐵) |
| 36 | 34, 35 | oveq12d 7367 | . . 3 ⊢ (𝜑 → ((2𝑀1) · (1𝑀2)) = (𝐶 · 𝐵)) |
| 37 | 33, 36 | oveq12d 7367 | . 2 ⊢ (𝜑 → (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2))) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) |
| 38 | 30, 37 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐽‘𝑀) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cpr 4579 ‘cfv 6482 (class class class)co 7349 1c1 11010 + caddc 11012 ℕcn 12128 2c2 12183 3c3 12184 ℤcz 12471 ...cfz 13410 ..^cfzo 13557 ♯chash 14237 Word cword 14420 〈“cs2 14748 Basecbs 17120 .rcmulr 17162 -gcsg 18814 Ringcrg 20118 Mat cmat 22292 maDet cmdat 22469 litMatclmat 33784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14503 df-substr 14548 df-pfx 14578 df-splice 14656 df-reverse 14665 df-s2 14755 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-efmnd 18743 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-gim 19138 df-cntz 19196 df-oppg 19225 df-symg 19249 df-pmtr 19321 df-psgn 19370 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-sra 21077 df-rgmod 21078 df-cnfld 21262 df-zring 21354 df-zrh 21410 df-dsmm 21639 df-frlm 21654 df-mat 22293 df-mdet 22470 df-lmat 33785 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |