![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmat22det | Structured version Visualization version GIF version |
Description: The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.) |
Ref | Expression |
---|---|
lmat22.m | β’ π = (litMatββ¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ©) |
lmat22.a | β’ (π β π΄ β π) |
lmat22.b | β’ (π β π΅ β π) |
lmat22.c | β’ (π β πΆ β π) |
lmat22.d | β’ (π β π· β π) |
lmat22det.t | β’ Β· = (.rβπ ) |
lmat22det.s | β’ β = (-gβπ ) |
lmat22det.v | β’ π = (Baseβπ ) |
lmat22det.j | β’ π½ = ((1...2) maDet π ) |
lmat22det.r | β’ (π β π β Ring) |
Ref | Expression |
---|---|
lmat22det | β’ (π β (π½βπ) = ((π΄ Β· π·) β (πΆ Β· π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmat22det.r | . . 3 β’ (π β π β Ring) | |
2 | lmat22.m | . . . 4 β’ π = (litMatββ¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ©) | |
3 | 2nn 12289 | . . . . 5 β’ 2 β β | |
4 | 3 | a1i 11 | . . . 4 β’ (π β 2 β β) |
5 | lmat22.a | . . . . . 6 β’ (π β π΄ β π) | |
6 | lmat22.b | . . . . . 6 β’ (π β π΅ β π) | |
7 | 5, 6 | s2cld 14828 | . . . . 5 β’ (π β β¨βπ΄π΅ββ© β Word π) |
8 | lmat22.c | . . . . . 6 β’ (π β πΆ β π) | |
9 | lmat22.d | . . . . . 6 β’ (π β π· β π) | |
10 | 8, 9 | s2cld 14828 | . . . . 5 β’ (π β β¨βπΆπ·ββ© β Word π) |
11 | 7, 10 | s2cld 14828 | . . . 4 β’ (π β β¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ© β Word Word π) |
12 | s2len 14846 | . . . . 5 β’ (β―ββ¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ©) = 2 | |
13 | 12 | a1i 11 | . . . 4 β’ (π β (β―ββ¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ©) = 2) |
14 | 2, 5, 6, 8, 9 | lmat22lem 33327 | . . . 4 β’ ((π β§ π β (0..^2)) β (β―β(β¨ββ¨βπ΄π΅ββ©β¨βπΆπ·ββ©ββ©βπ)) = 2) |
15 | lmat22det.v | . . . 4 β’ π = (Baseβπ ) | |
16 | eqid 2726 | . . . 4 β’ ((1...2) Mat π ) = ((1...2) Mat π ) | |
17 | eqid 2726 | . . . 4 β’ (Baseβ((1...2) Mat π )) = (Baseβ((1...2) Mat π )) | |
18 | 2, 4, 11, 13, 14, 15, 16, 17, 1 | lmatcl 33326 | . . 3 β’ (π β π β (Baseβ((1...2) Mat π ))) |
19 | 2z 12598 | . . . . . 6 β’ 2 β β€ | |
20 | fzval3 13707 | . . . . . 6 β’ (2 β β€ β (1...2) = (1..^(2 + 1))) | |
21 | 19, 20 | ax-mp 5 | . . . . 5 β’ (1...2) = (1..^(2 + 1)) |
22 | 2p1e3 12358 | . . . . . 6 β’ (2 + 1) = 3 | |
23 | 22 | oveq2i 7416 | . . . . 5 β’ (1..^(2 + 1)) = (1..^3) |
24 | fzo13pr 13722 | . . . . 5 β’ (1..^3) = {1, 2} | |
25 | 21, 23, 24 | 3eqtri 2758 | . . . 4 β’ (1...2) = {1, 2} |
26 | lmat22det.j | . . . 4 β’ π½ = ((1...2) maDet π ) | |
27 | lmat22det.s | . . . 4 β’ β = (-gβπ ) | |
28 | lmat22det.t | . . . 4 β’ Β· = (.rβπ ) | |
29 | 25, 26, 16, 17, 27, 28 | m2detleib 22488 | . . 3 β’ ((π β Ring β§ π β (Baseβ((1...2) Mat π ))) β (π½βπ) = (((1π1) Β· (2π2)) β ((2π1) Β· (1π2)))) |
30 | 1, 18, 29 | syl2anc 583 | . 2 β’ (π β (π½βπ) = (((1π1) Β· (2π2)) β ((2π1) Β· (1π2)))) |
31 | 2, 5, 6, 8, 9 | lmat22e11 33328 | . . . 4 β’ (π β (1π1) = π΄) |
32 | 2, 5, 6, 8, 9 | lmat22e22 33331 | . . . 4 β’ (π β (2π2) = π·) |
33 | 31, 32 | oveq12d 7423 | . . 3 β’ (π β ((1π1) Β· (2π2)) = (π΄ Β· π·)) |
34 | 2, 5, 6, 8, 9 | lmat22e21 33330 | . . . 4 β’ (π β (2π1) = πΆ) |
35 | 2, 5, 6, 8, 9 | lmat22e12 33329 | . . . 4 β’ (π β (1π2) = π΅) |
36 | 34, 35 | oveq12d 7423 | . . 3 β’ (π β ((2π1) Β· (1π2)) = (πΆ Β· π΅)) |
37 | 33, 36 | oveq12d 7423 | . 2 β’ (π β (((1π1) Β· (2π2)) β ((2π1) Β· (1π2))) = ((π΄ Β· π·) β (πΆ Β· π΅))) |
38 | 30, 37 | eqtrd 2766 | 1 β’ (π β (π½βπ) = ((π΄ Β· π·) β (πΆ Β· π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 {cpr 4625 βcfv 6537 (class class class)co 7405 1c1 11113 + caddc 11115 βcn 12216 2c2 12271 3c3 12272 β€cz 12562 ...cfz 13490 ..^cfzo 13633 β―chash 14295 Word cword 14470 β¨βcs2 14798 Basecbs 17153 .rcmulr 17207 -gcsg 18865 Ringcrg 20138 Mat cmat 22262 maDet cmdat 22441 litMatclmat 33321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-xor 1505 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-ot 4632 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-oadd 8471 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-oi 9507 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-xnn0 12549 df-z 12563 df-dec 12682 df-uz 12827 df-rp 12981 df-fz 13491 df-fzo 13634 df-seq 13973 df-exp 14033 df-fac 14239 df-bc 14268 df-hash 14296 df-word 14471 df-lsw 14519 df-concat 14527 df-s1 14552 df-substr 14597 df-pfx 14627 df-splice 14706 df-reverse 14715 df-s2 14805 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-starv 17221 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-unif 17229 df-hom 17230 df-cco 17231 df-0g 17396 df-gsum 17397 df-prds 17402 df-pws 17404 df-mre 17539 df-mrc 17540 df-acs 17542 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18713 df-submnd 18714 df-efmnd 18794 df-grp 18866 df-minusg 18867 df-sbg 18868 df-mulg 18996 df-subg 19050 df-ghm 19139 df-gim 19184 df-cntz 19233 df-oppg 19262 df-symg 19287 df-pmtr 19362 df-psgn 19411 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-cring 20141 df-rhm 20374 df-subrng 20446 df-subrg 20471 df-sra 21021 df-rgmod 21022 df-cnfld 21241 df-zring 21334 df-zrh 21390 df-dsmm 21627 df-frlm 21642 df-mat 22263 df-mdet 22442 df-lmat 33322 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |