![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmat22det | Structured version Visualization version GIF version |
Description: The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.) |
Ref | Expression |
---|---|
lmat22.m | ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) |
lmat22.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
lmat22.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
lmat22.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
lmat22.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
lmat22det.t | ⊢ · = (.r‘𝑅) |
lmat22det.s | ⊢ − = (-g‘𝑅) |
lmat22det.v | ⊢ 𝑉 = (Base‘𝑅) |
lmat22det.j | ⊢ 𝐽 = ((1...2) maDet 𝑅) |
lmat22det.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
lmat22det | ⊢ (𝜑 → (𝐽‘𝑀) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmat22det.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | lmat22.m | . . . 4 ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) | |
3 | 2nn 12337 | . . . . 5 ⊢ 2 ∈ ℕ | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ∈ ℕ) |
5 | lmat22.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | lmat22.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
7 | 5, 6 | s2cld 14907 | . . . . 5 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑉) |
8 | lmat22.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
9 | lmat22.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
10 | 8, 9 | s2cld 14907 | . . . . 5 ⊢ (𝜑 → 〈“𝐶𝐷”〉 ∈ Word 𝑉) |
11 | 7, 10 | s2cld 14907 | . . . 4 ⊢ (𝜑 → 〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉 ∈ Word Word 𝑉) |
12 | s2len 14925 | . . . . 5 ⊢ (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2 | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (♯‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) = 2) |
14 | 2, 5, 6, 8, 9 | lmat22lem 33778 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
15 | lmat22det.v | . . . 4 ⊢ 𝑉 = (Base‘𝑅) | |
16 | eqid 2735 | . . . 4 ⊢ ((1...2) Mat 𝑅) = ((1...2) Mat 𝑅) | |
17 | eqid 2735 | . . . 4 ⊢ (Base‘((1...2) Mat 𝑅)) = (Base‘((1...2) Mat 𝑅)) | |
18 | 2, 4, 11, 13, 14, 15, 16, 17, 1 | lmatcl 33777 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (Base‘((1...2) Mat 𝑅))) |
19 | 2z 12647 | . . . . . 6 ⊢ 2 ∈ ℤ | |
20 | fzval3 13770 | . . . . . 6 ⊢ (2 ∈ ℤ → (1...2) = (1..^(2 + 1))) | |
21 | 19, 20 | ax-mp 5 | . . . . 5 ⊢ (1...2) = (1..^(2 + 1)) |
22 | 2p1e3 12406 | . . . . . 6 ⊢ (2 + 1) = 3 | |
23 | 22 | oveq2i 7442 | . . . . 5 ⊢ (1..^(2 + 1)) = (1..^3) |
24 | fzo13pr 13785 | . . . . 5 ⊢ (1..^3) = {1, 2} | |
25 | 21, 23, 24 | 3eqtri 2767 | . . . 4 ⊢ (1...2) = {1, 2} |
26 | lmat22det.j | . . . 4 ⊢ 𝐽 = ((1...2) maDet 𝑅) | |
27 | lmat22det.s | . . . 4 ⊢ − = (-g‘𝑅) | |
28 | lmat22det.t | . . . 4 ⊢ · = (.r‘𝑅) | |
29 | 25, 26, 16, 17, 27, 28 | m2detleib 22653 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (Base‘((1...2) Mat 𝑅))) → (𝐽‘𝑀) = (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2)))) |
30 | 1, 18, 29 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐽‘𝑀) = (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2)))) |
31 | 2, 5, 6, 8, 9 | lmat22e11 33779 | . . . 4 ⊢ (𝜑 → (1𝑀1) = 𝐴) |
32 | 2, 5, 6, 8, 9 | lmat22e22 33782 | . . . 4 ⊢ (𝜑 → (2𝑀2) = 𝐷) |
33 | 31, 32 | oveq12d 7449 | . . 3 ⊢ (𝜑 → ((1𝑀1) · (2𝑀2)) = (𝐴 · 𝐷)) |
34 | 2, 5, 6, 8, 9 | lmat22e21 33781 | . . . 4 ⊢ (𝜑 → (2𝑀1) = 𝐶) |
35 | 2, 5, 6, 8, 9 | lmat22e12 33780 | . . . 4 ⊢ (𝜑 → (1𝑀2) = 𝐵) |
36 | 34, 35 | oveq12d 7449 | . . 3 ⊢ (𝜑 → ((2𝑀1) · (1𝑀2)) = (𝐶 · 𝐵)) |
37 | 33, 36 | oveq12d 7449 | . 2 ⊢ (𝜑 → (((1𝑀1) · (2𝑀2)) − ((2𝑀1) · (1𝑀2))) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) |
38 | 30, 37 | eqtrd 2775 | 1 ⊢ (𝜑 → (𝐽‘𝑀) = ((𝐴 · 𝐷) − (𝐶 · 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {cpr 4633 ‘cfv 6563 (class class class)co 7431 1c1 11154 + caddc 11156 ℕcn 12264 2c2 12319 3c3 12320 ℤcz 12611 ...cfz 13544 ..^cfzo 13691 ♯chash 14366 Word cword 14549 〈“cs2 14877 Basecbs 17245 .rcmulr 17299 -gcsg 18966 Ringcrg 20251 Mat cmat 22427 maDet cmdat 22606 litMatclmat 33772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1509 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-ot 4640 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12598 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-word 14550 df-lsw 14598 df-concat 14606 df-s1 14631 df-substr 14676 df-pfx 14706 df-splice 14785 df-reverse 14794 df-s2 14884 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-efmnd 18895 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-gim 19290 df-cntz 19348 df-oppg 19377 df-symg 19402 df-pmtr 19475 df-psgn 19524 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-sra 21190 df-rgmod 21191 df-cnfld 21383 df-zring 21476 df-zrh 21532 df-dsmm 21770 df-frlm 21785 df-mat 22428 df-mdet 22607 df-lmat 33773 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |