Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmat22det Structured version   Visualization version   GIF version

Theorem lmat22det 33835
Description: The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020.)
Hypotheses
Ref Expression
lmat22.m 𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)
lmat22.a (𝜑𝐴𝑉)
lmat22.b (𝜑𝐵𝑉)
lmat22.c (𝜑𝐶𝑉)
lmat22.d (𝜑𝐷𝑉)
lmat22det.t · = (.r𝑅)
lmat22det.s = (-g𝑅)
lmat22det.v 𝑉 = (Base‘𝑅)
lmat22det.j 𝐽 = ((1...2) maDet 𝑅)
lmat22det.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
lmat22det (𝜑 → (𝐽𝑀) = ((𝐴 · 𝐷) (𝐶 · 𝐵)))

Proof of Theorem lmat22det
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 lmat22det.r . . 3 (𝜑𝑅 ∈ Ring)
2 lmat22.m . . . 4 𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)
3 2nn 12198 . . . . 5 2 ∈ ℕ
43a1i 11 . . . 4 (𝜑 → 2 ∈ ℕ)
5 lmat22.a . . . . . 6 (𝜑𝐴𝑉)
6 lmat22.b . . . . . 6 (𝜑𝐵𝑉)
75, 6s2cld 14778 . . . . 5 (𝜑 → ⟨“𝐴𝐵”⟩ ∈ Word 𝑉)
8 lmat22.c . . . . . 6 (𝜑𝐶𝑉)
9 lmat22.d . . . . . 6 (𝜑𝐷𝑉)
108, 9s2cld 14778 . . . . 5 (𝜑 → ⟨“𝐶𝐷”⟩ ∈ Word 𝑉)
117, 10s2cld 14778 . . . 4 (𝜑 → ⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩ ∈ Word Word 𝑉)
12 s2len 14796 . . . . 5 (♯‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩) = 2
1312a1i 11 . . . 4 (𝜑 → (♯‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩) = 2)
142, 5, 6, 8, 9lmat22lem 33830 . . . 4 ((𝜑𝑖 ∈ (0..^2)) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
15 lmat22det.v . . . 4 𝑉 = (Base‘𝑅)
16 eqid 2731 . . . 4 ((1...2) Mat 𝑅) = ((1...2) Mat 𝑅)
17 eqid 2731 . . . 4 (Base‘((1...2) Mat 𝑅)) = (Base‘((1...2) Mat 𝑅))
182, 4, 11, 13, 14, 15, 16, 17, 1lmatcl 33829 . . 3 (𝜑𝑀 ∈ (Base‘((1...2) Mat 𝑅)))
19 2z 12504 . . . . . 6 2 ∈ ℤ
20 fzval3 13634 . . . . . 6 (2 ∈ ℤ → (1...2) = (1..^(2 + 1)))
2119, 20ax-mp 5 . . . . 5 (1...2) = (1..^(2 + 1))
22 2p1e3 12262 . . . . . 6 (2 + 1) = 3
2322oveq2i 7357 . . . . 5 (1..^(2 + 1)) = (1..^3)
24 fzo13pr 13649 . . . . 5 (1..^3) = {1, 2}
2521, 23, 243eqtri 2758 . . . 4 (1...2) = {1, 2}
26 lmat22det.j . . . 4 𝐽 = ((1...2) maDet 𝑅)
27 lmat22det.s . . . 4 = (-g𝑅)
28 lmat22det.t . . . 4 · = (.r𝑅)
2925, 26, 16, 17, 27, 28m2detleib 22546 . . 3 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (Base‘((1...2) Mat 𝑅))) → (𝐽𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
301, 18, 29syl2anc 584 . 2 (𝜑 → (𝐽𝑀) = (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))))
312, 5, 6, 8, 9lmat22e11 33831 . . . 4 (𝜑 → (1𝑀1) = 𝐴)
322, 5, 6, 8, 9lmat22e22 33834 . . . 4 (𝜑 → (2𝑀2) = 𝐷)
3331, 32oveq12d 7364 . . 3 (𝜑 → ((1𝑀1) · (2𝑀2)) = (𝐴 · 𝐷))
342, 5, 6, 8, 9lmat22e21 33833 . . . 4 (𝜑 → (2𝑀1) = 𝐶)
352, 5, 6, 8, 9lmat22e12 33832 . . . 4 (𝜑 → (1𝑀2) = 𝐵)
3634, 35oveq12d 7364 . . 3 (𝜑 → ((2𝑀1) · (1𝑀2)) = (𝐶 · 𝐵))
3733, 36oveq12d 7364 . 2 (𝜑 → (((1𝑀1) · (2𝑀2)) ((2𝑀1) · (1𝑀2))) = ((𝐴 · 𝐷) (𝐶 · 𝐵)))
3830, 37eqtrd 2766 1 (𝜑 → (𝐽𝑀) = ((𝐴 · 𝐷) (𝐶 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {cpr 4575  cfv 6481  (class class class)co 7346  1c1 11007   + caddc 11009  cn 12125  2c2 12180  3c3 12181  cz 12468  ...cfz 13407  ..^cfzo 13554  chash 14237  Word cword 14420  ⟨“cs2 14748  Basecbs 17120  .rcmulr 17162  -gcsg 18848  Ringcrg 20151   Mat cmat 22322   maDet cmdat 22499  litMatclmat 33824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-splice 14657  df-reverse 14666  df-s2 14755  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-efmnd 18777  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-gim 19171  df-cntz 19229  df-oppg 19258  df-symg 19282  df-pmtr 19354  df-psgn 19403  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-sra 21107  df-rgmod 21108  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-dsmm 21669  df-frlm 21684  df-mat 22323  df-mdet 22500  df-lmat 33825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator