Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply10s0 | Structured version Visualization version GIF version |
Description: Zero times a univariate polynomial is the zero polynomial (lmod0vs 20144 analog.) (Contributed by AV, 2-Dec-2019.) |
Ref | Expression |
---|---|
ply10s0.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply10s0.b | ⊢ 𝐵 = (Base‘𝑃) |
ply10s0.m | ⊢ ∗ = ( ·𝑠 ‘𝑃) |
ply10s0.e | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
ply10s0 | ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ( 0 ∗ 𝑀) = (0g‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply10s0.e | . . . 4 ⊢ 0 = (0g‘𝑅) | |
2 | ply10s0.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | 2 | ply1sca 21412 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
4 | 3 | adantr 481 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑅 = (Scalar‘𝑃)) |
5 | 4 | fveq2d 6771 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (0g‘𝑅) = (0g‘(Scalar‘𝑃))) |
6 | 1, 5 | eqtrid 2790 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 0 = (0g‘(Scalar‘𝑃))) |
7 | 6 | oveq1d 7283 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ( 0 ∗ 𝑀) = ((0g‘(Scalar‘𝑃)) ∗ 𝑀)) |
8 | 2 | ply1lmod 21411 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
9 | ply10s0.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
10 | eqid 2738 | . . . 4 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
11 | ply10s0.m | . . . 4 ⊢ ∗ = ( ·𝑠 ‘𝑃) | |
12 | eqid 2738 | . . . 4 ⊢ (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃)) | |
13 | eqid 2738 | . . . 4 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
14 | 9, 10, 11, 12, 13 | lmod0vs 20144 | . . 3 ⊢ ((𝑃 ∈ LMod ∧ 𝑀 ∈ 𝐵) → ((0g‘(Scalar‘𝑃)) ∗ 𝑀) = (0g‘𝑃)) |
15 | 8, 14 | sylan 580 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((0g‘(Scalar‘𝑃)) ∗ 𝑀) = (0g‘𝑃)) |
16 | 7, 15 | eqtrd 2778 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ( 0 ∗ 𝑀) = (0g‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6427 (class class class)co 7268 Basecbs 16900 Scalarcsca 16953 ·𝑠 cvsca 16954 0gc0g 17138 Ringcrg 19771 LModclmod 20111 Poly1cpl1 21336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7704 df-1st 7821 df-2nd 7822 df-supp 7966 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-1o 8285 df-er 8486 df-map 8605 df-en 8722 df-dom 8723 df-sdom 8724 df-fin 8725 df-fsupp 9117 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-nn 11962 df-2 12024 df-3 12025 df-4 12026 df-5 12027 df-6 12028 df-7 12029 df-8 12030 df-9 12031 df-n0 12222 df-z 12308 df-dec 12426 df-uz 12571 df-fz 13228 df-struct 16836 df-sets 16853 df-slot 16871 df-ndx 16883 df-base 16901 df-ress 16930 df-plusg 16963 df-mulr 16964 df-sca 16966 df-vsca 16967 df-tset 16969 df-ple 16970 df-0g 17140 df-mgm 18314 df-sgrp 18363 df-mnd 18374 df-grp 18568 df-minusg 18569 df-sbg 18570 df-subg 18740 df-mgp 19709 df-ur 19726 df-ring 19773 df-lmod 20113 df-lss 20182 df-psr 21100 df-mpl 21102 df-opsr 21104 df-psr1 21339 df-ply1 21341 |
This theorem is referenced by: pmatcollpw1lem1 21911 pmatcollpw2lem 21914 |
Copyright terms: Public domain | W3C validator |