![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply10s0 | Structured version Visualization version GIF version |
Description: Zero times a univariate polynomial is the zero polynomial (lmod0vs 20738 analog.) (Contributed by AV, 2-Dec-2019.) |
Ref | Expression |
---|---|
ply10s0.p | β’ π = (Poly1βπ ) |
ply10s0.b | β’ π΅ = (Baseβπ) |
ply10s0.m | β’ β = ( Β·π βπ) |
ply10s0.e | β’ 0 = (0gβπ ) |
Ref | Expression |
---|---|
ply10s0 | β’ ((π β Ring β§ π β π΅) β ( 0 β π) = (0gβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply10s0.e | . . . 4 β’ 0 = (0gβπ ) | |
2 | ply10s0.p | . . . . . . 7 β’ π = (Poly1βπ ) | |
3 | 2 | ply1sca 22121 | . . . . . 6 β’ (π β Ring β π = (Scalarβπ)) |
4 | 3 | adantr 480 | . . . . 5 β’ ((π β Ring β§ π β π΅) β π = (Scalarβπ)) |
5 | 4 | fveq2d 6888 | . . . 4 β’ ((π β Ring β§ π β π΅) β (0gβπ ) = (0gβ(Scalarβπ))) |
6 | 1, 5 | eqtrid 2778 | . . 3 β’ ((π β Ring β§ π β π΅) β 0 = (0gβ(Scalarβπ))) |
7 | 6 | oveq1d 7419 | . 2 β’ ((π β Ring β§ π β π΅) β ( 0 β π) = ((0gβ(Scalarβπ)) β π)) |
8 | 2 | ply1lmod 22120 | . . 3 β’ (π β Ring β π β LMod) |
9 | ply10s0.b | . . . 4 β’ π΅ = (Baseβπ) | |
10 | eqid 2726 | . . . 4 β’ (Scalarβπ) = (Scalarβπ) | |
11 | ply10s0.m | . . . 4 β’ β = ( Β·π βπ) | |
12 | eqid 2726 | . . . 4 β’ (0gβ(Scalarβπ)) = (0gβ(Scalarβπ)) | |
13 | eqid 2726 | . . . 4 β’ (0gβπ) = (0gβπ) | |
14 | 9, 10, 11, 12, 13 | lmod0vs 20738 | . . 3 β’ ((π β LMod β§ π β π΅) β ((0gβ(Scalarβπ)) β π) = (0gβπ)) |
15 | 8, 14 | sylan 579 | . 2 β’ ((π β Ring β§ π β π΅) β ((0gβ(Scalarβπ)) β π) = (0gβπ)) |
16 | 7, 15 | eqtrd 2766 | 1 β’ ((π β Ring β§ π β π΅) β ( 0 β π) = (0gβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βcfv 6536 (class class class)co 7404 Basecbs 17150 Scalarcsca 17206 Β·π cvsca 17207 0gc0g 17391 Ringcrg 20135 LModclmod 20703 Poly1cpl1 22046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8144 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-fz 13488 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-hom 17227 df-cco 17228 df-0g 17393 df-prds 17399 df-pws 17401 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-grp 18863 df-minusg 18864 df-sbg 18865 df-subg 19047 df-cmn 19699 df-abl 19700 df-mgp 20037 df-rng 20055 df-ur 20084 df-ring 20137 df-lmod 20705 df-lss 20776 df-psr 21798 df-mpl 21800 df-opsr 21802 df-psr1 22049 df-ply1 22051 |
This theorem is referenced by: pmatcollpw1lem1 22626 pmatcollpw2lem 22629 gsummoncoe1fzo 33172 |
Copyright terms: Public domain | W3C validator |