MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneleq Structured version   Visualization version   GIF version

Theorem lspsneleq 20292
Description: Membership relation that implies equality of spans. (spansneleq 29833 analog.) (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lspsneleq.v 𝑉 = (Base‘𝑊)
lspsneleq.o 0 = (0g𝑊)
lspsneleq.n 𝑁 = (LSpan‘𝑊)
lspsneleq.w (𝜑𝑊 ∈ LVec)
lspsneleq.x (𝜑𝑋𝑉)
lspsneleq.y (𝜑𝑌 ∈ (𝑁‘{𝑋}))
lspsneleq.z (𝜑𝑌0 )
Assertion
Ref Expression
lspsneleq (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))

Proof of Theorem lspsneleq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lspsneleq.y . 2 (𝜑𝑌 ∈ (𝑁‘{𝑋}))
2 lspsneleq.w . . . . 5 (𝜑𝑊 ∈ LVec)
3 lveclmod 20283 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
5 lspsneleq.x . . . 4 (𝜑𝑋𝑉)
6 eqid 2738 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2738 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
8 lspsneleq.v . . . . 5 𝑉 = (Base‘𝑊)
9 eqid 2738 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
10 lspsneleq.n . . . . 5 𝑁 = (LSpan‘𝑊)
116, 7, 8, 9, 10lspsnel 20180 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑌 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠𝑊)𝑋)))
124, 5, 11syl2anc 583 . . 3 (𝜑 → (𝑌 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠𝑊)𝑋)))
13 simpr 484 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑌 = (𝑘( ·𝑠𝑊)𝑋))
1413sneqd 4570 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → {𝑌} = {(𝑘( ·𝑠𝑊)𝑋)})
1514fveq2d 6760 . . . . 5 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑁‘{𝑌}) = (𝑁‘{(𝑘( ·𝑠𝑊)𝑋)}))
162ad2antrr 722 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑊 ∈ LVec)
17 simplr 765 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
18 lspsneleq.z . . . . . . . 8 (𝜑𝑌0 )
1918ad2antrr 722 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑌0 )
20 simplr 765 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑌 = (𝑘( ·𝑠𝑊)𝑋))
21 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑘 = (0g‘(Scalar‘𝑊)))
2221oveq1d 7270 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋))
23 eqid 2738 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
24 lspsneleq.o . . . . . . . . . . . . 13 0 = (0g𝑊)
258, 6, 9, 23, 24lmod0vs 20071 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
264, 5, 25syl2anc 583 . . . . . . . . . . 11 (𝜑 → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
2726ad3antrrr 726 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
2820, 22, 273eqtrd 2782 . . . . . . . . 9 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑌 = 0 )
2928ex 412 . . . . . . . 8 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑘 = (0g‘(Scalar‘𝑊)) → 𝑌 = 0 ))
3029necon3d 2963 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑌0𝑘 ≠ (0g‘(Scalar‘𝑊))))
3119, 30mpd 15 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
325ad2antrr 722 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑋𝑉)
338, 6, 9, 7, 23, 10lspsnvs 20291 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) ∧ 𝑋𝑉) → (𝑁‘{(𝑘( ·𝑠𝑊)𝑋)}) = (𝑁‘{𝑋}))
3416, 17, 31, 32, 33syl121anc 1373 . . . . 5 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑁‘{(𝑘( ·𝑠𝑊)𝑋)}) = (𝑁‘{𝑋}))
3515, 34eqtrd 2778 . . . 4 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))
3635rexlimdva2 3215 . . 3 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠𝑊)𝑋) → (𝑁‘{𝑌}) = (𝑁‘{𝑋})))
3712, 36sylbid 239 . 2 (𝜑 → (𝑌 ∈ (𝑁‘{𝑋}) → (𝑁‘{𝑌}) = (𝑁‘{𝑋})))
381, 37mpd 15 1 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LModclmod 20038  LSpanclspn 20148  LVecclvec 20279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280
This theorem is referenced by:  lspsncmp  20293  lspsnel4  20301  lspdisj2  20304  lspexch  20306  lsmcv  20318  mapdpglem10  39622  mapdpglem15  39627
  Copyright terms: Public domain W3C validator