Step | Hyp | Ref
| Expression |
1 | | lspsneleq.y |
. 2
⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) |
2 | | lspsneleq.w |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ LVec) |
3 | | lveclmod 20358 |
. . . . 5
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
4 | 2, 3 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LMod) |
5 | | lspsneleq.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
6 | | eqid 2740 |
. . . . 5
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
7 | | eqid 2740 |
. . . . 5
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
8 | | lspsneleq.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
9 | | eqid 2740 |
. . . . 5
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
10 | | lspsneleq.n |
. . . . 5
⊢ 𝑁 = (LSpan‘𝑊) |
11 | 6, 7, 8, 9, 10 | lspsnel 20255 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑌 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋))) |
12 | 4, 5, 11 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑌 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋))) |
13 | | simpr 485 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) → 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) |
14 | 13 | sneqd 4579 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) → {𝑌} = {(𝑘( ·𝑠
‘𝑊)𝑋)}) |
15 | 14 | fveq2d 6773 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) → (𝑁‘{𝑌}) = (𝑁‘{(𝑘( ·𝑠
‘𝑊)𝑋)})) |
16 | 2 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) → 𝑊 ∈ LVec) |
17 | | simplr 766 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) → 𝑘 ∈ (Base‘(Scalar‘𝑊))) |
18 | | lspsneleq.z |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ≠ 0 ) |
19 | 18 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) → 𝑌 ≠ 0 ) |
20 | | simplr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) |
21 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑘 = (0g‘(Scalar‘𝑊))) |
22 | 21 | oveq1d 7284 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠
‘𝑊)𝑋) =
((0g‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑋)) |
23 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
24 | | lspsneleq.o |
. . . . . . . . . . . . 13
⊢ 0 =
(0g‘𝑊) |
25 | 8, 6, 9, 23, 24 | lmod0vs 20146 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) →
((0g‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑋) = 0 ) |
26 | 4, 5, 25 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 →
((0g‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑋) = 0 ) |
27 | 26 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) →
((0g‘(Scalar‘𝑊))( ·𝑠
‘𝑊)𝑋) = 0 ) |
28 | 20, 22, 27 | 3eqtrd 2784 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑌 = 0 ) |
29 | 28 | ex 413 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) → (𝑘 = (0g‘(Scalar‘𝑊)) → 𝑌 = 0 )) |
30 | 29 | necon3d 2966 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) → (𝑌 ≠ 0 → 𝑘 ≠
(0g‘(Scalar‘𝑊)))) |
31 | 19, 30 | mpd 15 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) → 𝑘 ≠
(0g‘(Scalar‘𝑊))) |
32 | 5 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) → 𝑋 ∈ 𝑉) |
33 | 8, 6, 9, 7, 23, 10 | lspsnvs 20366 |
. . . . . 6
⊢ ((𝑊 ∈ LVec ∧ (𝑘 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠
(0g‘(Scalar‘𝑊))) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑘( ·𝑠
‘𝑊)𝑋)}) = (𝑁‘{𝑋})) |
34 | 16, 17, 31, 32, 33 | syl121anc 1374 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) → (𝑁‘{(𝑘( ·𝑠
‘𝑊)𝑋)}) = (𝑁‘{𝑋})) |
35 | 15, 34 | eqtrd 2780 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋)) → (𝑁‘{𝑌}) = (𝑁‘{𝑋})) |
36 | 35 | rexlimdva2 3218 |
. . 3
⊢ (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠
‘𝑊)𝑋) → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))) |
37 | 12, 36 | sylbid 239 |
. 2
⊢ (𝜑 → (𝑌 ∈ (𝑁‘{𝑋}) → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))) |
38 | 1, 37 | mpd 15 |
1
⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋})) |