MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneleq Structured version   Visualization version   GIF version

Theorem lspsneleq 20377
Description: Membership relation that implies equality of spans. (spansneleq 29932 analog.) (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lspsneleq.v 𝑉 = (Base‘𝑊)
lspsneleq.o 0 = (0g𝑊)
lspsneleq.n 𝑁 = (LSpan‘𝑊)
lspsneleq.w (𝜑𝑊 ∈ LVec)
lspsneleq.x (𝜑𝑋𝑉)
lspsneleq.y (𝜑𝑌 ∈ (𝑁‘{𝑋}))
lspsneleq.z (𝜑𝑌0 )
Assertion
Ref Expression
lspsneleq (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))

Proof of Theorem lspsneleq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lspsneleq.y . 2 (𝜑𝑌 ∈ (𝑁‘{𝑋}))
2 lspsneleq.w . . . . 5 (𝜑𝑊 ∈ LVec)
3 lveclmod 20368 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
5 lspsneleq.x . . . 4 (𝜑𝑋𝑉)
6 eqid 2738 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2738 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
8 lspsneleq.v . . . . 5 𝑉 = (Base‘𝑊)
9 eqid 2738 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
10 lspsneleq.n . . . . 5 𝑁 = (LSpan‘𝑊)
116, 7, 8, 9, 10lspsnel 20265 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑌 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠𝑊)𝑋)))
124, 5, 11syl2anc 584 . . 3 (𝜑 → (𝑌 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠𝑊)𝑋)))
13 simpr 485 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑌 = (𝑘( ·𝑠𝑊)𝑋))
1413sneqd 4573 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → {𝑌} = {(𝑘( ·𝑠𝑊)𝑋)})
1514fveq2d 6778 . . . . 5 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑁‘{𝑌}) = (𝑁‘{(𝑘( ·𝑠𝑊)𝑋)}))
162ad2antrr 723 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑊 ∈ LVec)
17 simplr 766 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
18 lspsneleq.z . . . . . . . 8 (𝜑𝑌0 )
1918ad2antrr 723 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑌0 )
20 simplr 766 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑌 = (𝑘( ·𝑠𝑊)𝑋))
21 simpr 485 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑘 = (0g‘(Scalar‘𝑊)))
2221oveq1d 7290 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋))
23 eqid 2738 . . . . . . . . . . . . 13 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
24 lspsneleq.o . . . . . . . . . . . . 13 0 = (0g𝑊)
258, 6, 9, 23, 24lmod0vs 20156 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
264, 5, 25syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
2726ad3antrrr 727 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
2820, 22, 273eqtrd 2782 . . . . . . . . 9 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑌 = 0 )
2928ex 413 . . . . . . . 8 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑘 = (0g‘(Scalar‘𝑊)) → 𝑌 = 0 ))
3029necon3d 2964 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑌0𝑘 ≠ (0g‘(Scalar‘𝑊))))
3119, 30mpd 15 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
325ad2antrr 723 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑋𝑉)
338, 6, 9, 7, 23, 10lspsnvs 20376 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) ∧ 𝑋𝑉) → (𝑁‘{(𝑘( ·𝑠𝑊)𝑋)}) = (𝑁‘{𝑋}))
3416, 17, 31, 32, 33syl121anc 1374 . . . . 5 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑁‘{(𝑘( ·𝑠𝑊)𝑋)}) = (𝑁‘{𝑋}))
3515, 34eqtrd 2778 . . . 4 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))
3635rexlimdva2 3216 . . 3 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠𝑊)𝑋) → (𝑁‘{𝑌}) = (𝑁‘{𝑋})))
3712, 36sylbid 239 . 2 (𝜑 → (𝑌 ∈ (𝑁‘{𝑋}) → (𝑁‘{𝑌}) = (𝑁‘{𝑋})))
381, 37mpd 15 1 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {csn 4561  cfv 6433  (class class class)co 7275  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  LModclmod 20123  LSpanclspn 20233  LVecclvec 20364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365
This theorem is referenced by:  lspsncmp  20378  lspsnel4  20386  lspdisj2  20389  lspexch  20391  lsmcv  20403  mapdpglem10  39695  mapdpglem15  39700
  Copyright terms: Public domain W3C validator