MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsubval2 Structured version   Visualization version   GIF version

Theorem lmodvsubval2 20874
Description: Value of vector subtraction in terms of addition. (hvsubval 30997 analog.) (Contributed by NM, 31-Mar-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvsubval2.v 𝑉 = (Base‘𝑊)
lmodvsubval2.p + = (+g𝑊)
lmodvsubval2.m = (-g𝑊)
lmodvsubval2.f 𝐹 = (Scalar‘𝑊)
lmodvsubval2.s · = ( ·𝑠𝑊)
lmodvsubval2.n 𝑁 = (invg𝐹)
lmodvsubval2.u 1 = (1r𝐹)
Assertion
Ref Expression
lmodvsubval2 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = (𝐴 + ((𝑁1 ) · 𝐵)))

Proof of Theorem lmodvsubval2
StepHypRef Expression
1 lmodvsubval2.v . . . 4 𝑉 = (Base‘𝑊)
2 lmodvsubval2.p . . . 4 + = (+g𝑊)
3 eqid 2735 . . . 4 (invg𝑊) = (invg𝑊)
4 lmodvsubval2.m . . . 4 = (-g𝑊)
51, 2, 3, 4grpsubval 18968 . . 3 ((𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = (𝐴 + ((invg𝑊)‘𝐵)))
653adant1 1130 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = (𝐴 + ((invg𝑊)‘𝐵)))
7 lmodvsubval2.f . . . . 5 𝐹 = (Scalar‘𝑊)
8 lmodvsubval2.s . . . . 5 · = ( ·𝑠𝑊)
9 lmodvsubval2.u . . . . 5 1 = (1r𝐹)
10 lmodvsubval2.n . . . . 5 𝑁 = (invg𝐹)
111, 3, 7, 8, 9, 10lmodvneg1 20862 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝑉) → ((𝑁1 ) · 𝐵) = ((invg𝑊)‘𝐵))
12113adant2 1131 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → ((𝑁1 ) · 𝐵) = ((invg𝑊)‘𝐵))
1312oveq2d 7421 . 2 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + ((𝑁1 ) · 𝐵)) = (𝐴 + ((invg𝑊)‘𝐵)))
146, 13eqtr4d 2773 1 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 𝐵) = (𝐴 + ((𝑁1 ) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  Scalarcsca 17274   ·𝑠 cvsca 17275  invgcminusg 18917  -gcsg 18918  1rcur 20141  LModclmod 20817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mgp 20101  df-ur 20142  df-ring 20195  df-lmod 20819
This theorem is referenced by:  lmodsubvs  20875  lmodsubdi  20876  lmodsubdir  20877  lssvsubcl  20901  clmvsubval  25060  lflsub  39085  ldualvsub  39173  ldualvsubval  39175  lcdvsub  41636  lcdvsubval  41637  baerlem3lem1  41726  zlmodzxzsubm  48334
  Copyright terms: Public domain W3C validator