Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmpr | Structured version Visualization version GIF version |
Description: The span of a pair of vectors equals the sum of the spans of their singletons. (Contributed by NM, 13-Jan-2015.) |
Ref | Expression |
---|---|
lsmpr.v | ⊢ 𝑉 = (Base‘𝑊) |
lsmpr.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lsmpr.p | ⊢ ⊕ = (LSSum‘𝑊) |
lsmpr.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lsmpr.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lsmpr.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
lsmpr | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmpr.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lsmpr.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | 2 | snssd 4743 | . . 3 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
4 | lsmpr.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
5 | 4 | snssd 4743 | . . 3 ⊢ (𝜑 → {𝑌} ⊆ 𝑉) |
6 | lsmpr.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
7 | lsmpr.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
8 | 6, 7 | lspun 20237 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉 ∧ {𝑌} ⊆ 𝑉) → (𝑁‘({𝑋} ∪ {𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))) |
9 | 1, 3, 5, 8 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑁‘({𝑋} ∪ {𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))) |
10 | df-pr 4565 | . . . 4 ⊢ {𝑋, 𝑌} = ({𝑋} ∪ {𝑌}) | |
11 | 10 | fveq2i 6770 | . . 3 ⊢ (𝑁‘{𝑋, 𝑌}) = (𝑁‘({𝑋} ∪ {𝑌})) |
12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = (𝑁‘({𝑋} ∪ {𝑌}))) |
13 | eqid 2738 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
14 | 6, 13, 7 | lspsncl 20227 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
15 | 1, 2, 14 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
16 | 6, 13, 7 | lspsncl 20227 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
17 | 1, 4, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
18 | lsmpr.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
19 | 13, 7, 18 | lsmsp 20336 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))) |
20 | 1, 15, 17, 19 | syl3anc 1370 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))) |
21 | 9, 12, 20 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ⊆ wss 3887 {csn 4562 {cpr 4564 ‘cfv 6427 (class class class)co 7268 Basecbs 16900 LSSumclsm 19227 LModclmod 20111 LSubSpclss 20181 LSpanclspn 20221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-nn 11962 df-2 12024 df-sets 16853 df-slot 16871 df-ndx 16883 df-base 16901 df-ress 16930 df-plusg 16963 df-0g 17140 df-mgm 18314 df-sgrp 18363 df-mnd 18374 df-submnd 18419 df-grp 18568 df-minusg 18569 df-sbg 18570 df-subg 18740 df-cntz 18911 df-lsm 19229 df-cmn 19376 df-abl 19377 df-mgp 19709 df-ur 19726 df-ring 19773 df-lmod 20113 df-lss 20182 df-lsp 20222 |
This theorem is referenced by: lsppreli 20340 lsmelpr 20341 lsppr0 20342 lspprabs 20345 lspabs2 20370 lspindpi 20382 lsmsat 37008 dvh4dimlem 39443 dvh3dim3N 39449 lclkrlem2c 39509 lcfrlem20 39562 lcfrlem23 39565 mapdindp 39671 mapdindp2 39721 mapdindp4 39723 mapdh6dN 39739 lspindp5 39770 hdmap1l6d 39813 hdmaprnlem3eN 39858 |
Copyright terms: Public domain | W3C validator |