| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmpr | Structured version Visualization version GIF version | ||
| Description: The span of a pair of vectors equals the sum of the spans of their singletons. (Contributed by NM, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsmpr.v | ⊢ 𝑉 = (Base‘𝑊) |
| lsmpr.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsmpr.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsmpr.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lsmpr.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lsmpr.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lsmpr | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmpr.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lsmpr.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | 2 | snssd 4782 | . . 3 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
| 4 | lsmpr.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 5 | 4 | snssd 4782 | . . 3 ⊢ (𝜑 → {𝑌} ⊆ 𝑉) |
| 6 | lsmpr.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 7 | lsmpr.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 8 | 6, 7 | lspun 20929 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉 ∧ {𝑌} ⊆ 𝑉) → (𝑁‘({𝑋} ∪ {𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))) |
| 9 | 1, 3, 5, 8 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝑁‘({𝑋} ∪ {𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))) |
| 10 | df-pr 4602 | . . . 4 ⊢ {𝑋, 𝑌} = ({𝑋} ∪ {𝑌}) | |
| 11 | 10 | fveq2i 6875 | . . 3 ⊢ (𝑁‘{𝑋, 𝑌}) = (𝑁‘({𝑋} ∪ {𝑌})) |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = (𝑁‘({𝑋} ∪ {𝑌}))) |
| 13 | eqid 2734 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 14 | 6, 13, 7 | lspsncl 20919 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 15 | 1, 2, 14 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 16 | 6, 13, 7 | lspsncl 20919 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 17 | 1, 4, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 18 | lsmpr.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
| 19 | 13, 7, 18 | lsmsp 21029 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))) |
| 20 | 1, 15, 17, 19 | syl3anc 1372 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) = (𝑁‘((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))) |
| 21 | 9, 12, 20 | 3eqtr4d 2779 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∪ cun 3922 ⊆ wss 3924 {csn 4599 {cpr 4601 ‘cfv 6527 (class class class)co 7399 Basecbs 17213 LSSumclsm 19600 LModclmod 20802 LSubSpclss 20873 LSpanclspn 20913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-0g 17440 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18747 df-grp 18904 df-minusg 18905 df-sbg 18906 df-subg 19091 df-cntz 19285 df-lsm 19602 df-cmn 19748 df-abl 19749 df-mgp 20086 df-ur 20127 df-ring 20180 df-lmod 20804 df-lss 20874 df-lsp 20914 |
| This theorem is referenced by: lsppreli 21033 lsmelpr 21034 lsppr0 21035 lspprabs 21038 lspabs2 21066 lspindpi 21078 lsmsat 38947 dvh4dimlem 41383 dvh3dim3N 41389 lclkrlem2c 41449 lcfrlem20 41502 lcfrlem23 41505 mapdindp 41611 mapdindp2 41661 mapdindp4 41663 mapdh6dN 41679 lspindp5 41710 hdmap1l6d 41753 hdmaprnlem3eN 41798 |
| Copyright terms: Public domain | W3C validator |