Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmsp2 | Structured version Visualization version GIF version |
Description: Subspace sum of spans of subsets is the span of their union. (spanuni 29892 analog.) (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
Ref | Expression |
---|---|
lsmsp2.v | ⊢ 𝑉 = (Base‘𝑊) |
lsmsp2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lsmsp2.p | ⊢ ⊕ = (LSSum‘𝑊) |
Ref | Expression |
---|---|
lsmsp2 | ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ⊕ (𝑁‘𝑈)) = (𝑁‘(𝑇 ∪ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑊 ∈ LMod) | |
2 | lsmsp2.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
3 | eqid 2738 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
4 | lsmsp2.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | 2, 3, 4 | lspcl 20226 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉) → (𝑁‘𝑇) ∈ (LSubSp‘𝑊)) |
6 | 5 | 3adant3 1131 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑇) ∈ (LSubSp‘𝑊)) |
7 | 2, 3, 4 | lspcl 20226 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) ∈ (LSubSp‘𝑊)) |
8 | 7 | 3adant2 1130 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) ∈ (LSubSp‘𝑊)) |
9 | lsmsp2.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
10 | 3, 4, 9 | lsmsp 20336 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑇) ∈ (LSubSp‘𝑊) ∧ (𝑁‘𝑈) ∈ (LSubSp‘𝑊)) → ((𝑁‘𝑇) ⊕ (𝑁‘𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
11 | 1, 6, 8, 10 | syl3anc 1370 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ⊕ (𝑁‘𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
12 | 2, 4 | lspun 20237 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
13 | 11, 12 | eqtr4d 2781 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ⊕ (𝑁‘𝑈)) = (𝑁‘(𝑇 ∪ 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ⊆ wss 3887 ‘cfv 6427 (class class class)co 7268 Basecbs 16900 LSSumclsm 19227 LModclmod 20111 LSubSpclss 20181 LSpanclspn 20221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-nn 11962 df-2 12024 df-sets 16853 df-slot 16871 df-ndx 16883 df-base 16901 df-ress 16930 df-plusg 16963 df-0g 17140 df-mgm 18314 df-sgrp 18363 df-mnd 18374 df-submnd 18419 df-grp 18568 df-minusg 18569 df-sbg 18570 df-subg 18740 df-cntz 18911 df-lsm 19229 df-cmn 19376 df-abl 19377 df-mgp 19709 df-ur 19726 df-ring 19773 df-lmod 20113 df-lss 20182 df-lsp 20222 |
This theorem is referenced by: lsmssspx 20338 lspsntri 20347 lindsunlem 31691 dimkerim 31694 dihprrnlem1N 39424 dihprrnlem2 39425 djhlsmat 39427 dvh4dimlem 39443 lsmfgcl 40885 |
Copyright terms: Public domain | W3C validator |