| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmsp2 | Structured version Visualization version GIF version | ||
| Description: Subspace sum of spans of subsets is the span of their union. (spanuni 31471 analog.) (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
| Ref | Expression |
|---|---|
| lsmsp2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lsmsp2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lsmsp2.p | ⊢ ⊕ = (LSSum‘𝑊) |
| Ref | Expression |
|---|---|
| lsmsp2 | ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ⊕ (𝑁‘𝑈)) = (𝑁‘(𝑇 ∪ 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → 𝑊 ∈ LMod) | |
| 2 | lsmsp2.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | eqid 2735 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 4 | lsmsp2.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | 2, 3, 4 | lspcl 20931 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉) → (𝑁‘𝑇) ∈ (LSubSp‘𝑊)) |
| 6 | 5 | 3adant3 1132 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑇) ∈ (LSubSp‘𝑊)) |
| 7 | 2, 3, 4 | lspcl 20931 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) ∈ (LSubSp‘𝑊)) |
| 8 | 7 | 3adant2 1131 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) ∈ (LSubSp‘𝑊)) |
| 9 | lsmsp2.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
| 10 | 3, 4, 9 | lsmsp 21042 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑇) ∈ (LSubSp‘𝑊) ∧ (𝑁‘𝑈) ∈ (LSubSp‘𝑊)) → ((𝑁‘𝑇) ⊕ (𝑁‘𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
| 11 | 1, 6, 8, 10 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ⊕ (𝑁‘𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
| 12 | 2, 4 | lspun 20942 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → (𝑁‘(𝑇 ∪ 𝑈)) = (𝑁‘((𝑁‘𝑇) ∪ (𝑁‘𝑈)))) |
| 13 | 11, 12 | eqtr4d 2773 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ⊕ (𝑁‘𝑈)) = (𝑁‘(𝑇 ∪ 𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 ⊆ wss 3926 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 LSSumclsm 19613 LModclmod 20815 LSubSpclss 20886 LSpanclspn 20926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-subg 19104 df-cntz 19298 df-lsm 19615 df-cmn 19761 df-abl 19762 df-mgp 20099 df-ur 20140 df-ring 20193 df-lmod 20817 df-lss 20887 df-lsp 20927 |
| This theorem is referenced by: lsmssspx 21044 lspsntri 21053 lindsunlem 33610 dimkerim 33613 dihprrnlem1N 41389 dihprrnlem2 41390 djhlsmat 41392 dvh4dimlem 41408 lsmfgcl 43045 |
| Copyright terms: Public domain | W3C validator |