MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem5 Structured version   Visualization version   GIF version

Theorem lsppratlem5 21153
Description: Lemma for lspprat 21155. Combine the two cases and show a contradiction to 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}) under the assumptions on 𝑥 and 𝑦. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem1.o 0 = (0g𝑊)
lsppratlem1.x2 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
lsppratlem1.y2 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
Assertion
Ref Expression
lsppratlem5 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈)

Proof of Theorem lsppratlem5
StepHypRef Expression
1 lspprat.v . . . 4 𝑉 = (Base‘𝑊)
2 lspprat.s . . . 4 𝑆 = (LSubSp‘𝑊)
3 lspprat.n . . . 4 𝑁 = (LSpan‘𝑊)
4 lspprat.w . . . . 5 (𝜑𝑊 ∈ LVec)
54adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑁‘{𝑌})) → 𝑊 ∈ LVec)
6 lspprat.u . . . . 5 (𝜑𝑈𝑆)
76adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑁‘{𝑌})) → 𝑈𝑆)
8 lspprat.x . . . . 5 (𝜑𝑋𝑉)
98adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑁‘{𝑌})) → 𝑋𝑉)
10 lspprat.y . . . . 5 (𝜑𝑌𝑉)
1110adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑁‘{𝑌})) → 𝑌𝑉)
12 lspprat.p . . . . 5 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
1312adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑁‘{𝑌})) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
14 lsppratlem1.o . . . 4 0 = (0g𝑊)
15 lsppratlem1.x2 . . . . 5 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
1615adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑁‘{𝑌})) → 𝑥 ∈ (𝑈 ∖ { 0 }))
17 lsppratlem1.y2 . . . . 5 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
1817adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑁‘{𝑌})) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
19 simpr 484 . . . 4 ((𝜑𝑥 ∈ (𝑁‘{𝑌})) → 𝑥 ∈ (𝑁‘{𝑌}))
201, 2, 3, 5, 7, 9, 11, 13, 14, 16, 18, 19lsppratlem3 21151 . . 3 ((𝜑𝑥 ∈ (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))
214adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑊 ∈ LVec)
226adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑈𝑆)
238adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑋𝑉)
2410adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑌𝑉)
2512adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
2615adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑥 ∈ (𝑈 ∖ { 0 }))
2717adantr 480 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
28 simpr 484 . . . 4 ((𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑋 ∈ (𝑁‘{𝑥, 𝑌}))
291, 2, 3, 21, 22, 23, 24, 25, 14, 26, 27, 28lsppratlem4 21152 . . 3 ((𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))
301, 2, 3, 4, 6, 8, 10, 12, 14, 15, 17lsppratlem1 21149 . . 3 (𝜑 → (𝑥 ∈ (𝑁‘{𝑌}) ∨ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})))
3120, 29, 30mpjaodan 961 . 2 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))
324adantr 480 . . 3 ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑊 ∈ LVec)
336adantr 480 . . 3 ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑈𝑆)
348adantr 480 . . 3 ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑋𝑉)
3510adantr 480 . . 3 ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑌𝑉)
3612adantr 480 . . 3 ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
3715adantr 480 . . 3 ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑥 ∈ (𝑈 ∖ { 0 }))
3817adantr 480 . . 3 ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
39 simprl 771 . . 3 ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑋 ∈ (𝑁‘{𝑥, 𝑦}))
40 simprr 773 . . 3 ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))
411, 2, 3, 32, 33, 34, 35, 36, 14, 37, 38, 39, 40lsppratlem2 21150 . 2 ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈)
4231, 41mpdan 687 1 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cdif 3948  wss 3951  wpss 3952  {csn 4626  {cpr 4628  cfv 6561  Basecbs 17247  0gc0g 17484  LSubSpclss 20929  LSpanclspn 20969  LVecclvec 21101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lvec 21102
This theorem is referenced by:  lsppratlem6  21154
  Copyright terms: Public domain W3C validator