| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsppratlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for lspprat 21119. Combine the two cases and show a contradiction to 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}) under the assumptions on 𝑥 and 𝑦. (Contributed by NM, 29-Aug-2014.) |
| Ref | Expression |
|---|---|
| lspprat.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspprat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspprat.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspprat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lspprat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lspprat.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lspprat.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lspprat.p | ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
| lsppratlem1.o | ⊢ 0 = (0g‘𝑊) |
| lsppratlem1.x2 | ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) |
| lsppratlem1.y2 | ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
| Ref | Expression |
|---|---|
| lsppratlem5 | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lspprat.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | lspprat.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | lspprat.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑊 ∈ LVec) |
| 6 | lspprat.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑈 ∈ 𝑆) |
| 8 | lspprat.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑋 ∈ 𝑉) |
| 10 | lspprat.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑌 ∈ 𝑉) |
| 12 | lspprat.p | . . . . 5 ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) | |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
| 14 | lsppratlem1.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 15 | lsppratlem1.x2 | . . . . 5 ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) | |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑥 ∈ (𝑈 ∖ { 0 })) |
| 17 | lsppratlem1.y2 | . . . . 5 ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) | |
| 18 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
| 19 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑥 ∈ (𝑁‘{𝑌})) | |
| 20 | 1, 2, 3, 5, 7, 9, 11, 13, 14, 16, 18, 19 | lsppratlem3 21115 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) |
| 21 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑊 ∈ LVec) |
| 22 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑈 ∈ 𝑆) |
| 23 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑋 ∈ 𝑉) |
| 24 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑌 ∈ 𝑉) |
| 25 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
| 26 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑥 ∈ (𝑈 ∖ { 0 })) |
| 27 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
| 28 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) | |
| 29 | 1, 2, 3, 21, 22, 23, 24, 25, 14, 26, 27, 28 | lsppratlem4 21116 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) |
| 30 | 1, 2, 3, 4, 6, 8, 10, 12, 14, 15, 17 | lsppratlem1 21113 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝑁‘{𝑌}) ∨ 𝑋 ∈ (𝑁‘{𝑥, 𝑌}))) |
| 31 | 20, 29, 30 | mpjaodan 960 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) |
| 32 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑊 ∈ LVec) |
| 33 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑈 ∈ 𝑆) |
| 34 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑋 ∈ 𝑉) |
| 35 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑌 ∈ 𝑉) |
| 36 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
| 37 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑥 ∈ (𝑈 ∖ { 0 })) |
| 38 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
| 39 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑋 ∈ (𝑁‘{𝑥, 𝑦})) | |
| 40 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑌 ∈ (𝑁‘{𝑥, 𝑦})) | |
| 41 | 1, 2, 3, 32, 33, 34, 35, 36, 14, 37, 38, 39, 40 | lsppratlem2 21114 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
| 42 | 31, 41 | mpdan 687 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ⊆ wss 3931 ⊊ wpss 3932 {csn 4606 {cpr 4608 ‘cfv 6536 Basecbs 17233 0gc0g 17458 LSubSpclss 20893 LSpanclspn 20933 LVecclvec 21065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-drng 20696 df-lmod 20824 df-lss 20894 df-lsp 20934 df-lvec 21066 |
| This theorem is referenced by: lsppratlem6 21118 |
| Copyright terms: Public domain | W3C validator |