| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsppratlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for lspprat 21094. Combine the two cases and show a contradiction to 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}) under the assumptions on 𝑥 and 𝑦. (Contributed by NM, 29-Aug-2014.) |
| Ref | Expression |
|---|---|
| lspprat.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspprat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspprat.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspprat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lspprat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lspprat.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lspprat.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lspprat.p | ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
| lsppratlem1.o | ⊢ 0 = (0g‘𝑊) |
| lsppratlem1.x2 | ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) |
| lsppratlem1.y2 | ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
| Ref | Expression |
|---|---|
| lsppratlem5 | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lspprat.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | lspprat.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | lspprat.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑊 ∈ LVec) |
| 6 | lspprat.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑈 ∈ 𝑆) |
| 8 | lspprat.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑋 ∈ 𝑉) |
| 10 | lspprat.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑌 ∈ 𝑉) |
| 12 | lspprat.p | . . . . 5 ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) | |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
| 14 | lsppratlem1.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 15 | lsppratlem1.x2 | . . . . 5 ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) | |
| 16 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑥 ∈ (𝑈 ∖ { 0 })) |
| 17 | lsppratlem1.y2 | . . . . 5 ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) | |
| 18 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
| 19 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑥 ∈ (𝑁‘{𝑌})) | |
| 20 | 1, 2, 3, 5, 7, 9, 11, 13, 14, 16, 18, 19 | lsppratlem3 21090 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) |
| 21 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑊 ∈ LVec) |
| 22 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑈 ∈ 𝑆) |
| 23 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑋 ∈ 𝑉) |
| 24 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑌 ∈ 𝑉) |
| 25 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
| 26 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑥 ∈ (𝑈 ∖ { 0 })) |
| 27 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
| 28 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) | |
| 29 | 1, 2, 3, 21, 22, 23, 24, 25, 14, 26, 27, 28 | lsppratlem4 21091 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) |
| 30 | 1, 2, 3, 4, 6, 8, 10, 12, 14, 15, 17 | lsppratlem1 21088 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝑁‘{𝑌}) ∨ 𝑋 ∈ (𝑁‘{𝑥, 𝑌}))) |
| 31 | 20, 29, 30 | mpjaodan 960 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) |
| 32 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑊 ∈ LVec) |
| 33 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑈 ∈ 𝑆) |
| 34 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑋 ∈ 𝑉) |
| 35 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑌 ∈ 𝑉) |
| 36 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
| 37 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑥 ∈ (𝑈 ∖ { 0 })) |
| 38 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
| 39 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑋 ∈ (𝑁‘{𝑥, 𝑦})) | |
| 40 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑌 ∈ (𝑁‘{𝑥, 𝑦})) | |
| 41 | 1, 2, 3, 32, 33, 34, 35, 36, 14, 37, 38, 39, 40 | lsppratlem2 21089 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
| 42 | 31, 41 | mpdan 687 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ⊆ wss 3898 ⊊ wpss 3899 {csn 4577 {cpr 4579 ‘cfv 6488 Basecbs 17124 0gc0g 17347 LSubSpclss 20868 LSpanclspn 20908 LVecclvec 21040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-tpos 8164 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-grp 18853 df-minusg 18854 df-sbg 18855 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-oppr 20259 df-dvdsr 20279 df-unit 20280 df-invr 20310 df-drng 20650 df-lmod 20799 df-lss 20869 df-lsp 20909 df-lvec 21041 |
| This theorem is referenced by: lsppratlem6 21093 |
| Copyright terms: Public domain | W3C validator |