Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsppratlem5 | Structured version Visualization version GIF version |
Description: Lemma for lspprat 20222. Combine the two cases and show a contradiction to 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}) under the assumptions on 𝑥 and 𝑦. (Contributed by NM, 29-Aug-2014.) |
Ref | Expression |
---|---|
lspprat.v | ⊢ 𝑉 = (Base‘𝑊) |
lspprat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspprat.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspprat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspprat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspprat.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspprat.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lspprat.p | ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
lsppratlem1.o | ⊢ 0 = (0g‘𝑊) |
lsppratlem1.x2 | ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) |
lsppratlem1.y2 | ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
Ref | Expression |
---|---|
lsppratlem5 | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprat.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lspprat.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lspprat.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | lspprat.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
5 | 4 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑊 ∈ LVec) |
6 | lspprat.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | 6 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑈 ∈ 𝑆) |
8 | lspprat.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
9 | 8 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑋 ∈ 𝑉) |
10 | lspprat.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
11 | 10 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑌 ∈ 𝑉) |
12 | lspprat.p | . . . . 5 ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) | |
13 | 12 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
14 | lsppratlem1.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
15 | lsppratlem1.x2 | . . . . 5 ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) | |
16 | 15 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑥 ∈ (𝑈 ∖ { 0 })) |
17 | lsppratlem1.y2 | . . . . 5 ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) | |
18 | 17 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
19 | simpr 488 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑥 ∈ (𝑁‘{𝑌})) | |
20 | 1, 2, 3, 5, 7, 9, 11, 13, 14, 16, 18, 19 | lsppratlem3 20218 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) |
21 | 4 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑊 ∈ LVec) |
22 | 6 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑈 ∈ 𝑆) |
23 | 8 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑋 ∈ 𝑉) |
24 | 10 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑌 ∈ 𝑉) |
25 | 12 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
26 | 15 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑥 ∈ (𝑈 ∖ { 0 })) |
27 | 17 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
28 | simpr 488 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) | |
29 | 1, 2, 3, 21, 22, 23, 24, 25, 14, 26, 27, 28 | lsppratlem4 20219 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) |
30 | 1, 2, 3, 4, 6, 8, 10, 12, 14, 15, 17 | lsppratlem1 20216 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝑁‘{𝑌}) ∨ 𝑋 ∈ (𝑁‘{𝑥, 𝑌}))) |
31 | 20, 29, 30 | mpjaodan 959 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) |
32 | 4 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑊 ∈ LVec) |
33 | 6 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑈 ∈ 𝑆) |
34 | 8 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑋 ∈ 𝑉) |
35 | 10 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑌 ∈ 𝑉) |
36 | 12 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
37 | 15 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑥 ∈ (𝑈 ∖ { 0 })) |
38 | 17 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
39 | simprl 771 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑋 ∈ (𝑁‘{𝑥, 𝑦})) | |
40 | simprr 773 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑌 ∈ (𝑁‘{𝑥, 𝑦})) | |
41 | 1, 2, 3, 32, 33, 34, 35, 36, 14, 37, 38, 39, 40 | lsppratlem2 20217 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
42 | 31, 41 | mpdan 687 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ∖ cdif 3880 ⊆ wss 3883 ⊊ wpss 3884 {csn 4557 {cpr 4559 ‘cfv 6400 Basecbs 16792 0gc0g 16976 LSubSpclss 20000 LSpanclspn 20040 LVecclvec 20171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10814 ax-resscn 10815 ax-1cn 10816 ax-icn 10817 ax-addcl 10818 ax-addrcl 10819 ax-mulcl 10820 ax-mulrcl 10821 ax-mulcom 10822 ax-addass 10823 ax-mulass 10824 ax-distr 10825 ax-i2m1 10826 ax-1ne0 10827 ax-1rid 10828 ax-rnegex 10829 ax-rrecex 10830 ax-cnre 10831 ax-pre-lttri 10832 ax-pre-lttrn 10833 ax-pre-ltadd 10834 ax-pre-mulgt0 10835 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-1st 7782 df-2nd 7783 df-tpos 7991 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-er 8414 df-en 8650 df-dom 8651 df-sdom 8652 df-pnf 10898 df-mnf 10899 df-xr 10900 df-ltxr 10901 df-le 10902 df-sub 11093 df-neg 11094 df-nn 11860 df-2 11922 df-3 11923 df-sets 16749 df-slot 16767 df-ndx 16777 df-base 16793 df-ress 16817 df-plusg 16847 df-mulr 16848 df-0g 16978 df-mgm 18146 df-sgrp 18195 df-mnd 18206 df-grp 18400 df-minusg 18401 df-sbg 18402 df-cmn 19204 df-abl 19205 df-mgp 19537 df-ur 19549 df-ring 19596 df-oppr 19673 df-dvdsr 19691 df-unit 19692 df-invr 19722 df-drng 19801 df-lmod 19933 df-lss 20001 df-lsp 20041 df-lvec 20172 |
This theorem is referenced by: lsppratlem6 20221 |
Copyright terms: Public domain | W3C validator |