Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsppratlem5 | Structured version Visualization version GIF version |
Description: Lemma for lspprat 20330. Combine the two cases and show a contradiction to 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}) under the assumptions on 𝑥 and 𝑦. (Contributed by NM, 29-Aug-2014.) |
Ref | Expression |
---|---|
lspprat.v | ⊢ 𝑉 = (Base‘𝑊) |
lspprat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspprat.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspprat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspprat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspprat.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspprat.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lspprat.p | ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
lsppratlem1.o | ⊢ 0 = (0g‘𝑊) |
lsppratlem1.x2 | ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) |
lsppratlem1.y2 | ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
Ref | Expression |
---|---|
lsppratlem5 | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprat.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lspprat.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lspprat.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | lspprat.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑊 ∈ LVec) |
6 | lspprat.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑈 ∈ 𝑆) |
8 | lspprat.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑋 ∈ 𝑉) |
10 | lspprat.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑌 ∈ 𝑉) |
12 | lspprat.p | . . . . 5 ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) | |
13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
14 | lsppratlem1.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
15 | lsppratlem1.x2 | . . . . 5 ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) | |
16 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑥 ∈ (𝑈 ∖ { 0 })) |
17 | lsppratlem1.y2 | . . . . 5 ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) | |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
19 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑥 ∈ (𝑁‘{𝑌})) | |
20 | 1, 2, 3, 5, 7, 9, 11, 13, 14, 16, 18, 19 | lsppratlem3 20326 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑁‘{𝑌})) → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) |
21 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑊 ∈ LVec) |
22 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑈 ∈ 𝑆) |
23 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑋 ∈ 𝑉) |
24 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑌 ∈ 𝑉) |
25 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
26 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑥 ∈ (𝑈 ∖ { 0 })) |
27 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
28 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) | |
29 | 1, 2, 3, 21, 22, 23, 24, 25, 14, 26, 27, 28 | lsppratlem4 20327 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) |
30 | 1, 2, 3, 4, 6, 8, 10, 12, 14, 15, 17 | lsppratlem1 20324 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝑁‘{𝑌}) ∨ 𝑋 ∈ (𝑁‘{𝑥, 𝑌}))) |
31 | 20, 29, 30 | mpjaodan 955 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) |
32 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑊 ∈ LVec) |
33 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑈 ∈ 𝑆) |
34 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑋 ∈ 𝑉) |
35 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑌 ∈ 𝑉) |
36 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
37 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑥 ∈ (𝑈 ∖ { 0 })) |
38 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
39 | simprl 767 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑋 ∈ (𝑁‘{𝑥, 𝑦})) | |
40 | simprr 769 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → 𝑌 ∈ (𝑁‘{𝑥, 𝑦})) | |
41 | 1, 2, 3, 32, 33, 34, 35, 36, 14, 37, 38, 39, 40 | lsppratlem2 20325 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
42 | 31, 41 | mpdan 683 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 ⊊ wpss 3884 {csn 4558 {cpr 4560 ‘cfv 6418 Basecbs 16840 0gc0g 17067 LSubSpclss 20108 LSpanclspn 20148 LVecclvec 20279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 |
This theorem is referenced by: lsppratlem6 20329 |
Copyright terms: Public domain | W3C validator |