MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsntri Structured version   Visualization version   GIF version

Theorem lspsntri 21064
Description: Triangle-type inequality for span of a singleton. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.)
Hypotheses
Ref Expression
lspsntri.v 𝑉 = (Base‘𝑊)
lspsntri.a + = (+g𝑊)
lspsntri.n 𝑁 = (LSpan‘𝑊)
lspsntri.p = (LSSum‘𝑊)
Assertion
Ref Expression
lspsntri ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋}) (𝑁‘{𝑌})))

Proof of Theorem lspsntri
StepHypRef Expression
1 lspsntri.v . . . 4 𝑉 = (Base‘𝑊)
2 lspsntri.a . . . 4 + = (+g𝑊)
3 lspsntri.n . . . 4 𝑁 = (LSpan‘𝑊)
41, 2, 3lspvadd 21063 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋, 𝑌}))
5 df-pr 4609 . . . 4 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
65fveq2i 6889 . . 3 (𝑁‘{𝑋, 𝑌}) = (𝑁‘({𝑋} ∪ {𝑌}))
74, 6sseqtrdi 4004 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘({𝑋} ∪ {𝑌})))
8 simp1 1136 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑊 ∈ LMod)
9 simp2 1137 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑋𝑉)
109snssd 4789 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → {𝑋} ⊆ 𝑉)
11 simp3 1138 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → 𝑌𝑉)
1211snssd 4789 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → {𝑌} ⊆ 𝑉)
13 lspsntri.p . . . 4 = (LSSum‘𝑊)
141, 3, 13lsmsp2 21054 . . 3 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉 ∧ {𝑌} ⊆ 𝑉) → ((𝑁‘{𝑋}) (𝑁‘{𝑌})) = (𝑁‘({𝑋} ∪ {𝑌})))
158, 10, 12, 14syl3anc 1372 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑁‘{𝑋}) (𝑁‘{𝑌})) = (𝑁‘({𝑋} ∪ {𝑌})))
167, 15sseqtrrd 4001 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋}) (𝑁‘{𝑌})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  cun 3929  wss 3931  {csn 4606  {cpr 4608  cfv 6541  (class class class)co 7413  Basecbs 17229  +gcplusg 17273  LSSumclsm 19620  LModclmod 20826  LSpanclspn 20937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-subg 19110  df-cntz 19304  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-ur 20147  df-ring 20200  df-lmod 20828  df-lss 20898  df-lsp 20938
This theorem is referenced by:  lspsntrim  21065  cdlemn4a  41160  lcfrlem23  41526  baerlem5blem2  41673
  Copyright terms: Public domain W3C validator