MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lswccats1fst Structured version   Visualization version   GIF version

Theorem lswccats1fst 14560
Description: The last symbol of a nonempty word concatenated with its first symbol is the first symbol. (Contributed by AV, 28-Jun-2018.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
lswccats1fst ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0))

Proof of Theorem lswccats1fst
StepHypRef Expression
1 wrdsymb1 14478 . . 3 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃‘0) ∈ 𝑉)
2 lswccats1 14559 . . 3 ((𝑃 ∈ Word 𝑉 ∧ (𝑃‘0) ∈ 𝑉) → (lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑃‘0))
31, 2syldan 591 . 2 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = (𝑃‘0))
4 simpl 482 . . 3 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃 ∈ Word 𝑉)
51s1cld 14528 . . 3 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉)
6 lencl 14458 . . . . 5 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
7 elnnnn0c 12447 . . . . . 6 ((♯‘𝑃) ∈ ℕ ↔ ((♯‘𝑃) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑃)))
87biimpri 228 . . . . 5 (((♯‘𝑃) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ)
96, 8sylan 580 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℕ)
10 lbfzo0 13620 . . . 4 (0 ∈ (0..^(♯‘𝑃)) ↔ (♯‘𝑃) ∈ ℕ)
119, 10sylibr 234 . . 3 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 0 ∈ (0..^(♯‘𝑃)))
12 ccatval1 14502 . . 3 ((𝑃 ∈ Word 𝑉 ∧ ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉 ∧ 0 ∈ (0..^(♯‘𝑃))) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) = (𝑃‘0))
134, 5, 11, 12syl3anc 1373 . 2 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) = (𝑃‘0))
143, 13eqtr4d 2767 1 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029  cle 11169  cn 12146  0cn0 12402  ..^cfzo 13575  chash 14255  Word cword 14438  lastSclsw 14487   ++ cconcat 14495  ⟨“cs1 14520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521
This theorem is referenced by:  clwlkclwwlk2  29965
  Copyright terms: Public domain W3C validator