Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
class class class wbr 5147 (class class class)co 7405
ℝcr 11105 1c1 11107
+ caddc 11109 ≤
cle 11245 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 |
This theorem is referenced by: fzossfzop1
13706 modltm1p1mod
13884 facubnd
14256 swrds2
14887 lo1bddrp
15465 mulcn2
15536 harmonic
15801 expcnv
15806 prmfac1
16654 eulerthlem2
16711 telgsumfzs
19851 nlmvscnlem2
24193 nghmcn
24253 ipcnlem2
24752 ovolicc2lem3
25027 ovolicopnf
25032 dyadf
25099 dyadovol
25101 dyadmaxlem
25105 volsup2
25113 mbfi1fseqlem5
25228 itg2gt0
25269 itg2cnlem1
25270 dvfsumle
25529 dvfsumabs
25531 dvfsumlem3
25536 leibpi
26436 efrlim
26463 zetacvg
26508 lgamgulmlem3
26524 lgamgulmlem5
26526 basellem2
26575 basellem3
26576 basellem5
26578 basellem6
26579 ppip1le
26654 bcmono
26769 rplogsumlem2
26977 dchrisumlem1
26981 dchrisumlem2
26982 dchrisumlem3
26983 selberg2lem
27042 logdivbnd
27048 pntrlog2bndlem2
27070 pntrlog2bndlem5
27073 pntlemk
27098 pntleml
27103 crctcshwlkn0lem3
29055 crctcshwlkn0lem5
29057 wwlksnred
29135 wwlksnextproplem1
29152 wwlksnextproplem2
29153 wwlksnextproplem3
29154 clwlkclwwlkf1lem2
29247 clwwlkf
29289 clwwlkf1
29291 wwlksubclwwlk
29300 eupth2lems
29480 numclwlk2lem2f
29619 pmtrto1cl
32245 psgnfzto1stlem
32246 fzto1st
32249 psgnfzto1st
32251 sxbrsigalem2
33273 dstfrvclim1
33464 fsum2dsub
33607 breprexplemc
33632 gg-dvfsumle
35170 poimirlem7
36483 poimirlem15
36491 rrntotbnd
36692 aks4d1p1p7
40927 aks4d1p1p5
40928 aks4d1p1
40929 2np3bcnp1
40948 sticksstones6
40955 sticksstones7
40956 sticksstones10
40959 sticksstones12a
40961 sticksstones12
40962 sticksstones22
40972 metakunt12
40984 jm2.17a
41684 hbt
41857 fmul01lt1lem1
44286 sumnnodd
44332 itgspltprt
44681 stoweidlem20
44722 stoweidlem26
44728 fzopredsuc
46017 smonoord
46025 lighneallem4a
46262 |