Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
class class class wbr 5149 (class class class)co 7409
ℝcr 11109 1c1 11111
+ caddc 11113 ≤
cle 11249 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 |
This theorem is referenced by: fzossfzop1
13710 modltm1p1mod
13888 facubnd
14260 swrds2
14891 lo1bddrp
15469 mulcn2
15540 harmonic
15805 expcnv
15810 prmfac1
16658 eulerthlem2
16715 telgsumfzs
19857 nlmvscnlem2
24202 nghmcn
24262 ipcnlem2
24761 ovolicc2lem3
25036 ovolicopnf
25041 dyadf
25108 dyadovol
25110 dyadmaxlem
25114 volsup2
25122 mbfi1fseqlem5
25237 itg2gt0
25278 itg2cnlem1
25279 dvfsumle
25538 dvfsumabs
25540 dvfsumlem3
25545 leibpi
26447 efrlim
26474 zetacvg
26519 lgamgulmlem3
26535 lgamgulmlem5
26537 basellem2
26586 basellem3
26587 basellem5
26589 basellem6
26590 ppip1le
26665 bcmono
26780 rplogsumlem2
26988 dchrisumlem1
26992 dchrisumlem2
26993 dchrisumlem3
26994 selberg2lem
27053 logdivbnd
27059 pntrlog2bndlem2
27081 pntrlog2bndlem5
27084 pntlemk
27109 pntleml
27114 crctcshwlkn0lem3
29066 crctcshwlkn0lem5
29068 wwlksnred
29146 wwlksnextproplem1
29163 wwlksnextproplem2
29164 wwlksnextproplem3
29165 clwlkclwwlkf1lem2
29258 clwwlkf
29300 clwwlkf1
29302 wwlksubclwwlk
29311 eupth2lems
29491 numclwlk2lem2f
29630 pmtrto1cl
32258 psgnfzto1stlem
32259 fzto1st
32262 psgnfzto1st
32264 sxbrsigalem2
33285 dstfrvclim1
33476 fsum2dsub
33619 breprexplemc
33644 gg-dvfsumle
35182 poimirlem7
36495 poimirlem15
36503 rrntotbnd
36704 aks4d1p1p7
40939 aks4d1p1p5
40940 aks4d1p1
40941 2np3bcnp1
40960 sticksstones6
40967 sticksstones7
40968 sticksstones10
40971 sticksstones12a
40973 sticksstones12
40974 sticksstones22
40984 metakunt12
40996 jm2.17a
41699 hbt
41872 fmul01lt1lem1
44300 sumnnodd
44346 itgspltprt
44695 stoweidlem20
44736 stoweidlem26
44742 fzopredsuc
46031 smonoord
46039 lighneallem4a
46276 |