Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
class class class wbr 5110 (class class class)co 7362
ℝcr 11057 1c1 11059
+ caddc 11061 ≤
cle 11197 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-po 5550 df-so 5551 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 |
This theorem is referenced by: fzossfzop1
13657 modltm1p1mod
13835 facubnd
14207 swrds2
14836 lo1bddrp
15414 mulcn2
15485 harmonic
15751 expcnv
15756 prmfac1
16604 eulerthlem2
16661 telgsumfzs
19773 nlmvscnlem2
24065 nghmcn
24125 ipcnlem2
24624 ovolicc2lem3
24899 ovolicopnf
24904 dyadf
24971 dyadovol
24973 dyadmaxlem
24977 volsup2
24985 mbfi1fseqlem5
25100 itg2gt0
25141 itg2cnlem1
25142 dvfsumle
25401 dvfsumabs
25403 dvfsumlem3
25408 leibpi
26308 efrlim
26335 zetacvg
26380 lgamgulmlem3
26396 lgamgulmlem5
26398 basellem2
26447 basellem3
26448 basellem5
26450 basellem6
26451 ppip1le
26526 bcmono
26641 rplogsumlem2
26849 dchrisumlem1
26853 dchrisumlem2
26854 dchrisumlem3
26855 selberg2lem
26914 logdivbnd
26920 pntrlog2bndlem2
26942 pntrlog2bndlem5
26945 pntlemk
26970 pntleml
26975 crctcshwlkn0lem3
28799 crctcshwlkn0lem5
28801 wwlksnred
28879 wwlksnextproplem1
28896 wwlksnextproplem2
28897 wwlksnextproplem3
28898 clwlkclwwlkf1lem2
28991 clwwlkf
29033 clwwlkf1
29035 wwlksubclwwlk
29044 eupth2lems
29224 numclwlk2lem2f
29363 pmtrto1cl
31990 psgnfzto1stlem
31991 fzto1st
31994 psgnfzto1st
31996 sxbrsigalem2
32926 dstfrvclim1
33117 fsum2dsub
33260 breprexplemc
33285 poimirlem7
36114 poimirlem15
36122 rrntotbnd
36324 aks4d1p1p7
40560 aks4d1p1p5
40561 aks4d1p1
40562 2np3bcnp1
40581 sticksstones6
40588 sticksstones7
40589 sticksstones10
40592 sticksstones12a
40594 sticksstones12
40595 sticksstones22
40605 metakunt12
40617 jm2.17a
41313 hbt
41486 fmul01lt1lem1
43899 sumnnodd
43945 itgspltprt
44294 stoweidlem20
44335 stoweidlem26
44341 fzopredsuc
45629 smonoord
45637 lighneallem4a
45874 |