![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rhmima | Structured version Visualization version GIF version |
Description: The homomorphic image of a subring is a subring. (Contributed by Stefan O'Rear, 10-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
rhmima | ⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubRing‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmghm 20510 | . . 3 ⊢ (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁)) | |
2 | subrgsubg 20605 | . . 3 ⊢ (𝑋 ∈ (SubRing‘𝑀) → 𝑋 ∈ (SubGrp‘𝑀)) | |
3 | ghmima 19277 | . . 3 ⊢ ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑋 ∈ (SubGrp‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubGrp‘𝑁)) | |
4 | 1, 2, 3 | syl2an 595 | . 2 ⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubGrp‘𝑁)) |
5 | eqid 2740 | . . . 4 ⊢ (mulGrp‘𝑀) = (mulGrp‘𝑀) | |
6 | eqid 2740 | . . . 4 ⊢ (mulGrp‘𝑁) = (mulGrp‘𝑁) | |
7 | 5, 6 | rhmmhm 20505 | . . 3 ⊢ (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁))) |
8 | 5 | subrgsubm 20613 | . . 3 ⊢ (𝑋 ∈ (SubRing‘𝑀) → 𝑋 ∈ (SubMnd‘(mulGrp‘𝑀))) |
9 | mhmima 18860 | . . 3 ⊢ ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubMnd‘(mulGrp‘𝑀))) → (𝐹 “ 𝑋) ∈ (SubMnd‘(mulGrp‘𝑁))) | |
10 | 7, 8, 9 | syl2an 595 | . 2 ⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubMnd‘(mulGrp‘𝑁))) |
11 | rhmrcl2 20503 | . . . 4 ⊢ (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝑁 ∈ Ring) | |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → 𝑁 ∈ Ring) |
13 | 6 | issubrg3 20628 | . . 3 ⊢ (𝑁 ∈ Ring → ((𝐹 “ 𝑋) ∈ (SubRing‘𝑁) ↔ ((𝐹 “ 𝑋) ∈ (SubGrp‘𝑁) ∧ (𝐹 “ 𝑋) ∈ (SubMnd‘(mulGrp‘𝑁))))) |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → ((𝐹 “ 𝑋) ∈ (SubRing‘𝑁) ↔ ((𝐹 “ 𝑋) ∈ (SubGrp‘𝑁) ∧ (𝐹 “ 𝑋) ∈ (SubMnd‘(mulGrp‘𝑁))))) |
15 | 4, 10, 14 | mpbir2and 712 | 1 ⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRing‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubRing‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 “ cima 5703 ‘cfv 6573 (class class class)co 7448 MndHom cmhm 18816 SubMndcsubmnd 18817 SubGrpcsubg 19160 GrpHom cghm 19252 mulGrpcmgp 20161 Ringcrg 20260 RingHom crh 20495 SubRingcsubrg 20595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-subg 19163 df-ghm 19253 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-rhm 20498 df-subrng 20572 df-subrg 20597 |
This theorem is referenced by: rnrhmsubrg 20633 imadrhmcl 20820 mpfsubrg 22150 pf1subrg 22373 plypf1 26271 imacrhmcl 42469 |
Copyright terms: Public domain | W3C validator |