MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mircgrs Structured version   Visualization version   GIF version

Theorem mircgrs 28652
Description: Point inversion preserves congruence. Theorem 7.16 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
miriso.1 (𝜑𝑋𝑃)
miriso.2 (𝜑𝑌𝑃)
mircgrs.z (𝜑𝑍𝑃)
mircgrs.t (𝜑𝑇𝑃)
mircgrs.e (𝜑 → (𝑋 𝑌) = (𝑍 𝑇))
Assertion
Ref Expression
mircgrs (𝜑 → ((𝑀𝑋) (𝑀𝑌)) = ((𝑀𝑍) (𝑀𝑇)))

Proof of Theorem mircgrs
StepHypRef Expression
1 mircgrs.e . 2 (𝜑 → (𝑋 𝑌) = (𝑍 𝑇))
2 mirval.p . . 3 𝑃 = (Base‘𝐺)
3 mirval.d . . 3 = (dist‘𝐺)
4 mirval.i . . 3 𝐼 = (Itv‘𝐺)
5 mirval.l . . 3 𝐿 = (LineG‘𝐺)
6 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
7 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
8 mirval.a . . 3 (𝜑𝐴𝑃)
9 mirfv.m . . 3 𝑀 = (𝑆𝐴)
10 miriso.1 . . 3 (𝜑𝑋𝑃)
11 miriso.2 . . 3 (𝜑𝑌𝑃)
122, 3, 4, 5, 6, 7, 8, 9, 10, 11miriso 28649 . 2 (𝜑 → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
13 mircgrs.z . . 3 (𝜑𝑍𝑃)
14 mircgrs.t . . 3 (𝜑𝑇𝑃)
152, 3, 4, 5, 6, 7, 8, 9, 13, 14miriso 28649 . 2 (𝜑 → ((𝑀𝑍) (𝑀𝑇)) = (𝑍 𝑇))
161, 12, 153eqtr4d 2776 1 (𝜑 → ((𝑀𝑋) (𝑀𝑌)) = ((𝑀𝑍) (𝑀𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  distcds 17170  TarskiGcstrkg 28406  Itvcitv 28412  LineGclng 28413  pInvGcmir 28631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkg 28432  df-mir 28632
This theorem is referenced by:  mirmir2  28653  mirauto  28663  mirrag  28680
  Copyright terms: Public domain W3C validator