| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mircgrs | Structured version Visualization version GIF version | ||
| Description: Point inversion preserves congruence. Theorem 7.16 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| miriso.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| miriso.2 | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| mircgrs.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| mircgrs.t | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
| mircgrs.e | ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑍 − 𝑇)) |
| Ref | Expression |
|---|---|
| mircgrs | ⊢ (𝜑 → ((𝑀‘𝑋) − (𝑀‘𝑌)) = ((𝑀‘𝑍) − (𝑀‘𝑇))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mircgrs.e | . 2 ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑍 − 𝑇)) | |
| 2 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 4 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 6 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 7 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 8 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 10 | miriso.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 11 | miriso.2 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | miriso 28604 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋) − (𝑀‘𝑌)) = (𝑋 − 𝑌)) |
| 13 | mircgrs.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 14 | mircgrs.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
| 15 | 2, 3, 4, 5, 6, 7, 8, 9, 13, 14 | miriso 28604 | . 2 ⊢ (𝜑 → ((𝑀‘𝑍) − (𝑀‘𝑇)) = (𝑍 − 𝑇)) |
| 16 | 1, 12, 15 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → ((𝑀‘𝑋) − (𝑀‘𝑌)) = ((𝑀‘𝑍) − (𝑀‘𝑇))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 distcds 17235 TarskiGcstrkg 28361 Itvcitv 28367 LineGclng 28368 pInvGcmir 28586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-oadd 8447 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-dju 9872 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-n0 12459 df-xnn0 12532 df-z 12546 df-uz 12810 df-fz 13482 df-hash 14306 df-trkgc 28382 df-trkgb 28383 df-trkgcb 28384 df-trkg 28387 df-mir 28587 |
| This theorem is referenced by: mirmir2 28608 mirauto 28618 mirrag 28635 |
| Copyright terms: Public domain | W3C validator |