| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > modn0mul | Structured version Visualization version GIF version | ||
| Description: If an integer is not 0 modulo a positive integer, this integer must be the sum of a multiple of the modulus and a positive integer less than the modulus. (Contributed by AV, 7-Jun-2020.) |
| Ref | Expression |
|---|---|
| modn0mul | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 12493 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 3 | nnre 12153 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ) |
| 5 | nnne0 12180 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 6 | 5 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0) |
| 7 | 2, 4, 6 | redivcld 11970 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
| 8 | 7 | flcld 13720 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝐴 / 𝑁)) ∈ ℤ) |
| 9 | 8 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (⌊‘(𝐴 / 𝑁)) ∈ ℤ) |
| 10 | zmodfzo 13816 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 mod 𝑁) ∈ (0..^𝑁)) | |
| 11 | 10 | anim1i 615 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → ((𝐴 mod 𝑁) ∈ (0..^𝑁) ∧ (𝐴 mod 𝑁) ≠ 0)) |
| 12 | fzo1fzo0n0 13636 | . . . 4 ⊢ ((𝐴 mod 𝑁) ∈ (1..^𝑁) ↔ ((𝐴 mod 𝑁) ∈ (0..^𝑁) ∧ (𝐴 mod 𝑁) ≠ 0)) | |
| 13 | 11, 12 | sylibr 234 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (𝐴 mod 𝑁) ∈ (1..^𝑁)) |
| 14 | nnrp 12923 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
| 15 | 1, 14 | anim12i 613 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+)) |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+)) |
| 17 | flpmodeq 13796 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)) = 𝐴) | |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)) = 𝐴) |
| 19 | 18 | eqcomd 2735 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁))) |
| 20 | oveq1 7360 | . . . . . 6 ⊢ (𝑥 = (⌊‘(𝐴 / 𝑁)) → (𝑥 · 𝑁) = ((⌊‘(𝐴 / 𝑁)) · 𝑁)) | |
| 21 | 20 | oveq1d 7368 | . . . . 5 ⊢ (𝑥 = (⌊‘(𝐴 / 𝑁)) → ((𝑥 · 𝑁) + 𝑦) = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦)) |
| 22 | 21 | eqeq2d 2740 | . . . 4 ⊢ (𝑥 = (⌊‘(𝐴 / 𝑁)) → (𝐴 = ((𝑥 · 𝑁) + 𝑦) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦))) |
| 23 | oveq2 7361 | . . . . 5 ⊢ (𝑦 = (𝐴 mod 𝑁) → (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦) = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁))) | |
| 24 | 23 | eqeq2d 2740 | . . . 4 ⊢ (𝑦 = (𝐴 mod 𝑁) → (𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)))) |
| 25 | 22, 24 | rspc2ev 3592 | . . 3 ⊢ (((⌊‘(𝐴 / 𝑁)) ∈ ℤ ∧ (𝐴 mod 𝑁) ∈ (1..^𝑁) ∧ 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦)) |
| 26 | 9, 13, 19, 25 | syl3anc 1373 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦)) |
| 27 | 26 | ex 412 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 / cdiv 11795 ℕcn 12146 ℤcz 12489 ℝ+crp 12911 ..^cfzo 13575 ⌊cfl 13712 mod cmo 13791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 |
| This theorem is referenced by: m1modmmod 47343 |
| Copyright terms: Public domain | W3C validator |