| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > modn0mul | Structured version Visualization version GIF version | ||
| Description: If an integer is not 0 modulo a positive integer, this integer must be the sum of the product of another integer and the modulus and a positive integer less than the modulus. (Contributed by AV, 7-Jun-2020.) |
| Ref | Expression |
|---|---|
| modn0mul | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 12592 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 3 | nnre 12247 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ) |
| 5 | nnne0 12274 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 6 | 5 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0) |
| 7 | 2, 4, 6 | redivcld 12069 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) |
| 8 | 7 | flcld 13815 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝐴 / 𝑁)) ∈ ℤ) |
| 9 | 8 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (⌊‘(𝐴 / 𝑁)) ∈ ℤ) |
| 10 | zmodfzo 13911 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 mod 𝑁) ∈ (0..^𝑁)) | |
| 11 | 10 | anim1i 615 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → ((𝐴 mod 𝑁) ∈ (0..^𝑁) ∧ (𝐴 mod 𝑁) ≠ 0)) |
| 12 | fzo1fzo0n0 13731 | . . . 4 ⊢ ((𝐴 mod 𝑁) ∈ (1..^𝑁) ↔ ((𝐴 mod 𝑁) ∈ (0..^𝑁) ∧ (𝐴 mod 𝑁) ≠ 0)) | |
| 13 | 11, 12 | sylibr 234 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (𝐴 mod 𝑁) ∈ (1..^𝑁)) |
| 14 | nnrp 13020 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
| 15 | 1, 14 | anim12i 613 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+)) |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+)) |
| 17 | flpmodeq 13891 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)) = 𝐴) | |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)) = 𝐴) |
| 19 | 18 | eqcomd 2741 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁))) |
| 20 | oveq1 7412 | . . . . . 6 ⊢ (𝑥 = (⌊‘(𝐴 / 𝑁)) → (𝑥 · 𝑁) = ((⌊‘(𝐴 / 𝑁)) · 𝑁)) | |
| 21 | 20 | oveq1d 7420 | . . . . 5 ⊢ (𝑥 = (⌊‘(𝐴 / 𝑁)) → ((𝑥 · 𝑁) + 𝑦) = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦)) |
| 22 | 21 | eqeq2d 2746 | . . . 4 ⊢ (𝑥 = (⌊‘(𝐴 / 𝑁)) → (𝐴 = ((𝑥 · 𝑁) + 𝑦) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦))) |
| 23 | oveq2 7413 | . . . . 5 ⊢ (𝑦 = (𝐴 mod 𝑁) → (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦) = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁))) | |
| 24 | 23 | eqeq2d 2746 | . . . 4 ⊢ (𝑦 = (𝐴 mod 𝑁) → (𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)))) |
| 25 | 22, 24 | rspc2ev 3614 | . . 3 ⊢ (((⌊‘(𝐴 / 𝑁)) ∈ ℤ ∧ (𝐴 mod 𝑁) ∈ (1..^𝑁) ∧ 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦)) |
| 26 | 9, 13, 19, 25 | syl3anc 1373 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦)) |
| 27 | 26 | ex 412 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 / cdiv 11894 ℕcn 12240 ℤcz 12588 ℝ+crp 13008 ..^cfzo 13671 ⌊cfl 13807 mod cmo 13886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 |
| This theorem is referenced by: m1modmmod 48501 |
| Copyright terms: Public domain | W3C validator |