Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modn0mul Structured version   Visualization version   GIF version

Theorem modn0mul 47908
Description: If an integer is not 0 modulo a positive integer, this integer must be the sum of the product of another integer and the modulus and a positive integer less than the modulus. (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
modn0mul ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑁,𝑦

Proof of Theorem modn0mul
StepHypRef Expression
1 zre 12614 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
21adantr 479 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
3 nnre 12271 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
43adantl 480 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
5 nnne0 12298 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
65adantl 480 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
72, 4, 6redivcld 12093 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ)
87flcld 13818 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝐴 / 𝑁)) ∈ ℤ)
98adantr 479 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (⌊‘(𝐴 / 𝑁)) ∈ ℤ)
10 zmodfzo 13914 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 mod 𝑁) ∈ (0..^𝑁))
1110anim1i 613 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → ((𝐴 mod 𝑁) ∈ (0..^𝑁) ∧ (𝐴 mod 𝑁) ≠ 0))
12 fzo1fzo0n0 13737 . . . 4 ((𝐴 mod 𝑁) ∈ (1..^𝑁) ↔ ((𝐴 mod 𝑁) ∈ (0..^𝑁) ∧ (𝐴 mod 𝑁) ≠ 0))
1311, 12sylibr 233 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (𝐴 mod 𝑁) ∈ (1..^𝑁))
14 nnrp 13039 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
151, 14anim12i 611 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
1615adantr 479 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
17 flpmodeq 13894 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)) = 𝐴)
1816, 17syl 17 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)) = 𝐴)
1918eqcomd 2732 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)))
20 oveq1 7431 . . . . . 6 (𝑥 = (⌊‘(𝐴 / 𝑁)) → (𝑥 · 𝑁) = ((⌊‘(𝐴 / 𝑁)) · 𝑁))
2120oveq1d 7439 . . . . 5 (𝑥 = (⌊‘(𝐴 / 𝑁)) → ((𝑥 · 𝑁) + 𝑦) = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦))
2221eqeq2d 2737 . . . 4 (𝑥 = (⌊‘(𝐴 / 𝑁)) → (𝐴 = ((𝑥 · 𝑁) + 𝑦) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦)))
23 oveq2 7432 . . . . 5 (𝑦 = (𝐴 mod 𝑁) → (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦) = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)))
2423eqeq2d 2737 . . . 4 (𝑦 = (𝐴 mod 𝑁) → (𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁))))
2522, 24rspc2ev 3621 . . 3 (((⌊‘(𝐴 / 𝑁)) ∈ ℤ ∧ (𝐴 mod 𝑁) ∈ (1..^𝑁) ∧ 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦))
269, 13, 19, 25syl3anc 1368 . 2 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦))
2726ex 411 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wne 2930  wrex 3060  cfv 6554  (class class class)co 7424  cr 11157  0cc0 11158  1c1 11159   + caddc 11161   · cmul 11163   / cdiv 11921  cn 12264  cz 12610  +crp 13028  ..^cfzo 13681  cfl 13810   mod cmo 13889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-fz 13539  df-fzo 13682  df-fl 13812  df-mod 13890
This theorem is referenced by:  m1modmmod  47909
  Copyright terms: Public domain W3C validator