Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modn0mul Structured version   Visualization version   GIF version

Theorem modn0mul 45754
Description: If an integer is not 0 modulo a positive integer, this integer must be the sum of the product of another integer and the modulus and a positive integer less than the modulus. (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
modn0mul ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑁,𝑦

Proof of Theorem modn0mul
StepHypRef Expression
1 zre 12253 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
21adantr 480 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
3 nnre 11910 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
43adantl 481 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
5 nnne0 11937 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
65adantl 481 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
72, 4, 6redivcld 11733 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ)
87flcld 13446 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝐴 / 𝑁)) ∈ ℤ)
98adantr 480 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (⌊‘(𝐴 / 𝑁)) ∈ ℤ)
10 zmodfzo 13542 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 mod 𝑁) ∈ (0..^𝑁))
1110anim1i 614 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → ((𝐴 mod 𝑁) ∈ (0..^𝑁) ∧ (𝐴 mod 𝑁) ≠ 0))
12 fzo1fzo0n0 13366 . . . 4 ((𝐴 mod 𝑁) ∈ (1..^𝑁) ↔ ((𝐴 mod 𝑁) ∈ (0..^𝑁) ∧ (𝐴 mod 𝑁) ≠ 0))
1311, 12sylibr 233 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (𝐴 mod 𝑁) ∈ (1..^𝑁))
14 nnrp 12670 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
151, 14anim12i 612 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
1615adantr 480 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
17 flpmodeq 13522 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)) = 𝐴)
1816, 17syl 17 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)) = 𝐴)
1918eqcomd 2744 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)))
20 oveq1 7262 . . . . . 6 (𝑥 = (⌊‘(𝐴 / 𝑁)) → (𝑥 · 𝑁) = ((⌊‘(𝐴 / 𝑁)) · 𝑁))
2120oveq1d 7270 . . . . 5 (𝑥 = (⌊‘(𝐴 / 𝑁)) → ((𝑥 · 𝑁) + 𝑦) = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦))
2221eqeq2d 2749 . . . 4 (𝑥 = (⌊‘(𝐴 / 𝑁)) → (𝐴 = ((𝑥 · 𝑁) + 𝑦) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦)))
23 oveq2 7263 . . . . 5 (𝑦 = (𝐴 mod 𝑁) → (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦) = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)))
2423eqeq2d 2749 . . . 4 (𝑦 = (𝐴 mod 𝑁) → (𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁))))
2522, 24rspc2ev 3564 . . 3 (((⌊‘(𝐴 / 𝑁)) ∈ ℤ ∧ (𝐴 mod 𝑁) ∈ (1..^𝑁) ∧ 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦))
269, 13, 19, 25syl3anc 1369 . 2 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦))
2726ex 412 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   / cdiv 11562  cn 11903  cz 12249  +crp 12659  ..^cfzo 13311  cfl 13438   mod cmo 13517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518
This theorem is referenced by:  m1modmmod  45755
  Copyright terms: Public domain W3C validator