Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > modeqmodmin | Structured version Visualization version GIF version |
Description: A real number equals the difference of the real number and a positive real number modulo the positive real number. (Contributed by AV, 3-Nov-2018.) |
Ref | Expression |
---|---|
modeqmodmin | ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) = ((𝐴 − 𝑀) mod 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modid0 13696 | . . . . 5 ⊢ (𝑀 ∈ ℝ+ → (𝑀 mod 𝑀) = 0) | |
2 | 1 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝑀 mod 𝑀) = 0) |
3 | modge0 13678 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 0 ≤ (𝐴 mod 𝑀)) | |
4 | 2, 3 | eqbrtrd 5108 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝑀 mod 𝑀) ≤ (𝐴 mod 𝑀)) |
5 | simpl 483 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ) | |
6 | rpre 12817 | . . . . 5 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ) | |
7 | 6 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ) |
8 | simpr 485 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+) | |
9 | modsubdir 13739 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝑀 mod 𝑀) ≤ (𝐴 mod 𝑀) ↔ ((𝐴 − 𝑀) mod 𝑀) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀)))) | |
10 | 5, 7, 8, 9 | syl3anc 1370 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝑀 mod 𝑀) ≤ (𝐴 mod 𝑀) ↔ ((𝐴 − 𝑀) mod 𝑀) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀)))) |
11 | 4, 10 | mpbid 231 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 − 𝑀) mod 𝑀) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀))) |
12 | 2 | eqcomd 2742 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 0 = (𝑀 mod 𝑀)) |
13 | 12 | oveq2d 7332 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) − 0) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀))) |
14 | modcl 13672 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℝ) | |
15 | 14 | recnd 11082 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℂ) |
16 | 15 | subid1d 11400 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) − 0) = (𝐴 mod 𝑀)) |
17 | 11, 13, 16 | 3eqtr2rd 2783 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) = ((𝐴 − 𝑀) mod 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5086 (class class class)co 7316 ℝcr 10949 0cc0 10950 ≤ cle 11089 − cmin 11284 ℝ+crp 12809 mod cmo 13668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-pre-sup 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-sup 9277 df-inf 9278 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-n0 12313 df-z 12399 df-uz 12662 df-rp 12810 df-fl 13591 df-mod 13669 |
This theorem is referenced by: cshwsublen 14585 nnpw2pmod 46199 |
Copyright terms: Public domain | W3C validator |