![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modeqmodmin | Structured version Visualization version GIF version |
Description: A real number equals the difference of the real number and a positive real number modulo the positive real number. (Contributed by AV, 3-Nov-2018.) |
Ref | Expression |
---|---|
modeqmodmin | ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) = ((𝐴 − 𝑀) mod 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modid0 12951 | . . . . 5 ⊢ (𝑀 ∈ ℝ+ → (𝑀 mod 𝑀) = 0) | |
2 | 1 | adantl 474 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝑀 mod 𝑀) = 0) |
3 | modge0 12933 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 0 ≤ (𝐴 mod 𝑀)) | |
4 | 2, 3 | eqbrtrd 4865 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝑀 mod 𝑀) ≤ (𝐴 mod 𝑀)) |
5 | simpl 475 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ) | |
6 | rpre 12082 | . . . . 5 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ) | |
7 | 6 | adantl 474 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ) |
8 | simpr 478 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+) | |
9 | modsubdir 12994 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝑀 mod 𝑀) ≤ (𝐴 mod 𝑀) ↔ ((𝐴 − 𝑀) mod 𝑀) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀)))) | |
10 | 5, 7, 8, 9 | syl3anc 1491 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝑀 mod 𝑀) ≤ (𝐴 mod 𝑀) ↔ ((𝐴 − 𝑀) mod 𝑀) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀)))) |
11 | 4, 10 | mpbid 224 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 − 𝑀) mod 𝑀) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀))) |
12 | 2 | eqcomd 2805 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 0 = (𝑀 mod 𝑀)) |
13 | 12 | oveq2d 6894 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) − 0) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀))) |
14 | modcl 12927 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℝ) | |
15 | 14 | recnd 10357 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℂ) |
16 | 15 | subid1d 10673 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) − 0) = (𝐴 mod 𝑀)) |
17 | 11, 13, 16 | 3eqtr2rd 2840 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) = ((𝐴 − 𝑀) mod 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 class class class wbr 4843 (class class class)co 6878 ℝcr 10223 0cc0 10224 ≤ cle 10364 − cmin 10556 ℝ+crp 12074 mod cmo 12923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-sup 8590 df-inf 8591 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-n0 11581 df-z 11667 df-uz 11931 df-rp 12075 df-fl 12848 df-mod 12924 |
This theorem is referenced by: cshwsublen 13881 nnpw2pmod 43176 |
Copyright terms: Public domain | W3C validator |