MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modeqmodmin Structured version   Visualization version   GIF version

Theorem modeqmodmin 13740
Description: A real number equals the difference of the real number and a positive real number modulo the positive real number. (Contributed by AV, 3-Nov-2018.)
Assertion
Ref Expression
modeqmodmin ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) = ((𝐴𝑀) mod 𝑀))

Proof of Theorem modeqmodmin
StepHypRef Expression
1 modid0 13696 . . . . 5 (𝑀 ∈ ℝ+ → (𝑀 mod 𝑀) = 0)
21adantl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝑀 mod 𝑀) = 0)
3 modge0 13678 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 0 ≤ (𝐴 mod 𝑀))
42, 3eqbrtrd 5108 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝑀 mod 𝑀) ≤ (𝐴 mod 𝑀))
5 simpl 483 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ)
6 rpre 12817 . . . . 5 (𝑀 ∈ ℝ+𝑀 ∈ ℝ)
76adantl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ)
8 simpr 485 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+)
9 modsubdir 13739 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝑀 mod 𝑀) ≤ (𝐴 mod 𝑀) ↔ ((𝐴𝑀) mod 𝑀) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀))))
105, 7, 8, 9syl3anc 1370 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝑀 mod 𝑀) ≤ (𝐴 mod 𝑀) ↔ ((𝐴𝑀) mod 𝑀) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀))))
114, 10mpbid 231 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴𝑀) mod 𝑀) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀)))
122eqcomd 2742 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 0 = (𝑀 mod 𝑀))
1312oveq2d 7332 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) − 0) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀)))
14 modcl 13672 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℝ)
1514recnd 11082 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℂ)
1615subid1d 11400 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) − 0) = (𝐴 mod 𝑀))
1711, 13, 163eqtr2rd 2783 1 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) = ((𝐴𝑀) mod 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105   class class class wbr 5086  (class class class)co 7316  cr 10949  0cc0 10950  cle 11089  cmin 11284  +crp 12809   mod cmo 13668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027  ax-pre-sup 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-sup 9277  df-inf 9278  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-nn 12053  df-n0 12313  df-z 12399  df-uz 12662  df-rp 12810  df-fl 13591  df-mod 13669
This theorem is referenced by:  cshwsublen  14585  nnpw2pmod  46199
  Copyright terms: Public domain W3C validator