MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modifeq2int Structured version   Visualization version   GIF version

Theorem modifeq2int 13653
Description: If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
Assertion
Ref Expression
modifeq2int ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))

Proof of Theorem modifeq2int
StepHypRef Expression
1 nn0re 12242 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2 nnrp 12741 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
31, 2anim12i 613 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
433adant3 1131 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
5 nn0ge0 12258 . . . . . . . 8 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
653ad2ant1 1132 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 0 ≤ 𝐴)
76anim1i 615 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → (0 ≤ 𝐴𝐴 < 𝐵))
87ancoms 459 . . . . 5 ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → (0 ≤ 𝐴𝐴 < 𝐵))
9 modid 13616 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴)
104, 8, 9syl2an2 683 . . . 4 ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = 𝐴)
11 iftrue 4465 . . . . . 6 (𝐴 < 𝐵 → if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)) = 𝐴)
1211eqcomd 2744 . . . . 5 (𝐴 < 𝐵𝐴 = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
1312adantr 481 . . . 4 ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → 𝐴 = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
1410, 13eqtrd 2778 . . 3 ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
1514ex 413 . 2 (𝐴 < 𝐵 → ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵))))
164adantr 481 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
17 nnre 11980 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
18 lenlt 11053 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
1917, 1, 18syl2anr 597 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
20193adant3 1131 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
2120biimpar 478 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
22 simpl3 1192 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐴 < (2 · 𝐵))
23 2submod 13652 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴𝐵))
2416, 21, 22, 23syl12anc 834 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = (𝐴𝐵))
25 iffalse 4468 . . . . . 6 𝐴 < 𝐵 → if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)) = (𝐴𝐵))
2625adantl 482 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)) = (𝐴𝐵))
2726eqcomd 2744 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
2824, 27eqtrd 2778 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
2928expcom 414 . 2 𝐴 < 𝐵 → ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵))))
3015, 29pm2.61i 182 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  ifcif 4459   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871   · cmul 10876   < clt 11009  cle 11010  cmin 11205  cn 11973  2c2 12028  0cn0 12233  +crp 12730   mod cmo 13589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512  df-mod 13590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator