Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  modifeq2int Structured version   Visualization version   GIF version

Theorem modifeq2int 13294
 Description: If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
Assertion
Ref Expression
modifeq2int ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))

Proof of Theorem modifeq2int
StepHypRef Expression
1 nn0re 11898 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2 nnrp 12393 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
31, 2anim12i 612 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
433adant3 1126 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
5 nn0ge0 11914 . . . . . . . 8 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
653ad2ant1 1127 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 0 ≤ 𝐴)
76anim1i 614 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → (0 ≤ 𝐴𝐴 < 𝐵))
87ancoms 459 . . . . 5 ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → (0 ≤ 𝐴𝐴 < 𝐵))
9 modid 13257 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴)
104, 8, 9syl2an2 682 . . . 4 ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = 𝐴)
11 iftrue 4475 . . . . . 6 (𝐴 < 𝐵 → if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)) = 𝐴)
1211eqcomd 2830 . . . . 5 (𝐴 < 𝐵𝐴 = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
1312adantr 481 . . . 4 ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → 𝐴 = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
1410, 13eqtrd 2860 . . 3 ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
1514ex 413 . 2 (𝐴 < 𝐵 → ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵))))
164adantr 481 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
17 nnre 11637 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
18 lenlt 10711 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
1917, 1, 18syl2anr 596 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
20193adant3 1126 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
2120biimpar 478 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
22 simpl3 1187 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐴 < (2 · 𝐵))
23 2submod 13293 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴𝐵))
2416, 21, 22, 23syl12anc 834 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = (𝐴𝐵))
25 iffalse 4478 . . . . . 6 𝐴 < 𝐵 → if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)) = (𝐴𝐵))
2625adantl 482 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)) = (𝐴𝐵))
2726eqcomd 2830 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
2824, 27eqtrd 2860 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
2928expcom 414 . 2 𝐴 < 𝐵 → ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵))))
3015, 29pm2.61i 183 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴𝐵)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2106  ifcif 4469   class class class wbr 5062  (class class class)co 7151  ℝcr 10528  0cc0 10529   · cmul 10534   < clt 10667   ≤ cle 10668   − cmin 10862  ℕcn 11630  2c2 11684  ℕ0cn0 11889  ℝ+crp 12382   mod cmo 13230 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-fl 13155  df-mod 13231 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator