| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > modifeq2int | Structured version Visualization version GIF version | ||
| Description: If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
| Ref | Expression |
|---|---|
| modifeq2int | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 12508 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
| 2 | nnrp 13018 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+) | |
| 3 | 1, 2 | anim12i 613 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+)) |
| 4 | 3 | 3adant3 1132 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+)) |
| 5 | nn0ge0 12524 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ0 → 0 ≤ 𝐴) | |
| 6 | 5 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 0 ≤ 𝐴) |
| 7 | 6 | anim1i 615 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) |
| 8 | 7 | ancoms 458 | . . . . 5 ⊢ ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) |
| 9 | modid 13911 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴) | |
| 10 | 4, 8, 9 | syl2an2 686 | . . . 4 ⊢ ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = 𝐴) |
| 11 | iftrue 4506 | . . . . . 6 ⊢ (𝐴 < 𝐵 → if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵)) = 𝐴) | |
| 12 | 11 | eqcomd 2741 | . . . . 5 ⊢ (𝐴 < 𝐵 → 𝐴 = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → 𝐴 = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) |
| 14 | 10, 13 | eqtrd 2770 | . . 3 ⊢ ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) |
| 15 | 14 | ex 412 | . 2 ⊢ (𝐴 < 𝐵 → ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵)))) |
| 16 | 4 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+)) |
| 17 | nnre 12245 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
| 18 | lenlt 11311 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 19 | 17, 1, 18 | syl2anr 597 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 20 | 19 | 3adant3 1132 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 21 | 20 | biimpar 477 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ≤ 𝐴) |
| 22 | simpl3 1194 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐴 < (2 · 𝐵)) | |
| 23 | 2submod 13948 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴 − 𝐵)) | |
| 24 | 16, 21, 22, 23 | syl12anc 836 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − 𝐵)) |
| 25 | iffalse 4509 | . . . . . 6 ⊢ (¬ 𝐴 < 𝐵 → if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵)) = (𝐴 − 𝐵)) | |
| 26 | 25 | adantl 481 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵)) = (𝐴 − 𝐵)) |
| 27 | 26 | eqcomd 2741 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 − 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) |
| 28 | 24, 27 | eqtrd 2770 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) |
| 29 | 28 | expcom 413 | . 2 ⊢ (¬ 𝐴 < 𝐵 → ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵)))) |
| 30 | 15, 29 | pm2.61i 182 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ifcif 4500 class class class wbr 5119 (class class class)co 7403 ℝcr 11126 0cc0 11127 · cmul 11132 < clt 11267 ≤ cle 11268 − cmin 11464 ℕcn 12238 2c2 12293 ℕ0cn0 12499 ℝ+crp 13006 mod cmo 13884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-fl 13807 df-mod 13885 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |