Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > modifeq2int | Structured version Visualization version GIF version |
Description: If a nonnegative integer is less than twice a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
Ref | Expression |
---|---|
modifeq2int | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 11985 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
2 | nnrp 12483 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+) | |
3 | 1, 2 | anim12i 616 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+)) |
4 | 3 | 3adant3 1133 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+)) |
5 | nn0ge0 12001 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ0 → 0 ≤ 𝐴) | |
6 | 5 | 3ad2ant1 1134 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → 0 ≤ 𝐴) |
7 | 6 | anim1i 618 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ 𝐴 < 𝐵) → (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) |
8 | 7 | ancoms 462 | . . . . 5 ⊢ ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) |
9 | modid 13355 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (0 ≤ 𝐴 ∧ 𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴) | |
10 | 4, 8, 9 | syl2an2 686 | . . . 4 ⊢ ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = 𝐴) |
11 | iftrue 4420 | . . . . . 6 ⊢ (𝐴 < 𝐵 → if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵)) = 𝐴) | |
12 | 11 | eqcomd 2744 | . . . . 5 ⊢ (𝐴 < 𝐵 → 𝐴 = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) |
13 | 12 | adantr 484 | . . . 4 ⊢ ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → 𝐴 = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) |
14 | 10, 13 | eqtrd 2773 | . . 3 ⊢ ((𝐴 < 𝐵 ∧ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) |
15 | 14 | ex 416 | . 2 ⊢ (𝐴 < 𝐵 → ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵)))) |
16 | 4 | adantr 484 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+)) |
17 | nnre 11723 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
18 | lenlt 10797 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
19 | 17, 1, 18 | syl2anr 600 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
20 | 19 | 3adant3 1133 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
21 | 20 | biimpar 481 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ≤ 𝐴) |
22 | simpl3 1194 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → 𝐴 < (2 · 𝐵)) | |
23 | 2submod 13391 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴 − 𝐵)) | |
24 | 16, 21, 22, 23 | syl12anc 836 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − 𝐵)) |
25 | iffalse 4423 | . . . . . 6 ⊢ (¬ 𝐴 < 𝐵 → if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵)) = (𝐴 − 𝐵)) | |
26 | 25 | adantl 485 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵)) = (𝐴 − 𝐵)) |
27 | 26 | eqcomd 2744 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 − 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) |
28 | 24, 27 | eqtrd 2773 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) ∧ ¬ 𝐴 < 𝐵) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) |
29 | 28 | expcom 417 | . 2 ⊢ (¬ 𝐴 < 𝐵 → ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵)))) |
30 | 15, 29 | pm2.61i 185 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < (2 · 𝐵)) → (𝐴 mod 𝐵) = if(𝐴 < 𝐵, 𝐴, (𝐴 − 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ifcif 4414 class class class wbr 5030 (class class class)co 7170 ℝcr 10614 0cc0 10615 · cmul 10620 < clt 10753 ≤ cle 10754 − cmin 10948 ℕcn 11716 2c2 11771 ℕ0cn0 11976 ℝ+crp 12472 mod cmo 13328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-sup 8979 df-inf 8980 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-n0 11977 df-z 12063 df-uz 12325 df-rp 12473 df-fl 13253 df-mod 13329 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |