![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decpmatfsupp | Structured version Visualization version GIF version |
Description: The mapping to the matrices consisting of the coefficients in the polynomial entries of a given matrix for the same power is finitely supported. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 3-Dec-2019.) |
Ref | Expression |
---|---|
decpmate.p | ⊢ 𝑃 = (Poly1‘𝑅) |
decpmate.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
decpmate.b | ⊢ 𝐵 = (Base‘𝐶) |
decpmatcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
decpmatfsupp.0 | ⊢ 0 = (0g‘𝐴) |
Ref | Expression |
---|---|
decpmatfsupp | ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑀 decompPMat 𝑘)) finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decpmatfsupp.0 | . . . 4 ⊢ 0 = (0g‘𝐴) | |
2 | 1 | fvexi 6857 | . . 3 ⊢ 0 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 0 ∈ V) |
4 | ovexd 7393 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑀 decompPMat 𝑘) ∈ V) | |
5 | oveq2 7366 | . 2 ⊢ (𝑘 = 𝑥 → (𝑀 decompPMat 𝑘) = (𝑀 decompPMat 𝑥)) | |
6 | decpmate.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
7 | decpmate.c | . . 3 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
8 | decpmate.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
9 | decpmatcl.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
10 | 6, 7, 8, 9, 1 | decpmataa0 22133 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 )) |
11 | 3, 4, 5, 10 | mptnn0fsuppd 13909 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑀 decompPMat 𝑘)) finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3444 class class class wbr 5106 ↦ cmpt 5189 ‘cfv 6497 (class class class)co 7358 finSupp cfsupp 9308 ℕ0cn0 12418 Basecbs 17088 0gc0g 17326 Ringcrg 19969 Poly1cpl1 21564 Mat cmat 21770 decompPMat cdecpmat 22127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-ot 4596 df-uni 4867 df-int 4909 df-iun 4957 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-of 7618 df-om 7804 df-1st 7922 df-2nd 7923 df-supp 8094 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-map 8770 df-ixp 8839 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-fsupp 9309 df-sup 9383 df-oi 9451 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-3 12222 df-4 12223 df-5 12224 df-6 12225 df-7 12226 df-8 12227 df-9 12228 df-n0 12419 df-z 12505 df-dec 12624 df-uz 12769 df-fz 13431 df-fzo 13574 df-seq 13913 df-hash 14237 df-struct 17024 df-sets 17041 df-slot 17059 df-ndx 17071 df-base 17089 df-ress 17118 df-plusg 17151 df-mulr 17152 df-sca 17154 df-vsca 17155 df-ip 17156 df-tset 17157 df-ple 17158 df-ds 17160 df-hom 17162 df-cco 17163 df-0g 17328 df-gsum 17329 df-prds 17334 df-pws 17336 df-mre 17471 df-mrc 17472 df-acs 17474 df-mgm 18502 df-sgrp 18551 df-mnd 18562 df-mhm 18606 df-submnd 18607 df-grp 18756 df-minusg 18757 df-sbg 18758 df-mulg 18878 df-subg 18930 df-ghm 19011 df-cntz 19102 df-cmn 19569 df-abl 19570 df-mgp 19902 df-ur 19919 df-ring 19971 df-subrg 20234 df-lmod 20338 df-lss 20408 df-sra 20649 df-rgmod 20650 df-dsmm 21154 df-frlm 21169 df-psr 21327 df-mpl 21329 df-opsr 21331 df-psr1 21567 df-ply1 21569 df-coe1 21570 df-mamu 21749 df-mat 21771 df-decpmat 22128 |
This theorem is referenced by: pm2mpf1lem 22159 pm2mpcl 22162 pm2mpcoe1 22165 pm2mpghmlem2 22177 pm2mpmhmlem2 22184 |
Copyright terms: Public domain | W3C validator |