Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > decpmatfsupp | Structured version Visualization version GIF version |
Description: The mapping to the matrices consisting of the coefficients in the polynomial entries of a given matrix for the same power is finitely supported. (Contributed by AV, 5-Oct-2019.) (Revised by AV, 3-Dec-2019.) |
Ref | Expression |
---|---|
decpmate.p | ⊢ 𝑃 = (Poly1‘𝑅) |
decpmate.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
decpmate.b | ⊢ 𝐵 = (Base‘𝐶) |
decpmatcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
decpmatfsupp.0 | ⊢ 0 = (0g‘𝐴) |
Ref | Expression |
---|---|
decpmatfsupp | ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑀 decompPMat 𝑘)) finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decpmatfsupp.0 | . . . 4 ⊢ 0 = (0g‘𝐴) | |
2 | 1 | fvexi 6691 | . . 3 ⊢ 0 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 0 ∈ V) |
4 | ovexd 7208 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑀 decompPMat 𝑘) ∈ V) | |
5 | oveq2 7181 | . 2 ⊢ (𝑘 = 𝑥 → (𝑀 decompPMat 𝑘) = (𝑀 decompPMat 𝑥)) | |
6 | decpmate.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
7 | decpmate.c | . . 3 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
8 | decpmate.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
9 | decpmatcl.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
10 | 6, 7, 8, 9, 1 | decpmataa0 21522 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 )) |
11 | 3, 4, 5, 10 | mptnn0fsuppd 13460 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑀 decompPMat 𝑘)) finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 Vcvv 3399 class class class wbr 5031 ↦ cmpt 5111 ‘cfv 6340 (class class class)co 7173 finSupp cfsupp 8909 ℕ0cn0 11979 Basecbs 16589 0gc0g 16819 Ringcrg 19419 Poly1cpl1 20955 Mat cmat 21161 decompPMat cdecpmat 21516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-cnex 10674 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-ot 4526 df-uni 4798 df-int 4838 df-iun 4884 df-iin 4885 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-se 5485 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-of 7428 df-om 7603 df-1st 7717 df-2nd 7718 df-supp 7860 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-1o 8134 df-er 8323 df-map 8442 df-ixp 8511 df-en 8559 df-dom 8560 df-sdom 8561 df-fin 8562 df-fsupp 8910 df-sup 8982 df-oi 9050 df-card 9444 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-nn 11720 df-2 11782 df-3 11783 df-4 11784 df-5 11785 df-6 11786 df-7 11787 df-8 11788 df-9 11789 df-n0 11980 df-z 12066 df-dec 12183 df-uz 12328 df-fz 12985 df-fzo 13128 df-seq 13464 df-hash 13786 df-struct 16591 df-ndx 16592 df-slot 16593 df-base 16595 df-sets 16596 df-ress 16597 df-plusg 16684 df-mulr 16685 df-sca 16687 df-vsca 16688 df-ip 16689 df-tset 16690 df-ple 16691 df-ds 16693 df-hom 16695 df-cco 16696 df-0g 16821 df-gsum 16822 df-prds 16827 df-pws 16829 df-mre 16963 df-mrc 16964 df-acs 16966 df-mgm 17971 df-sgrp 18020 df-mnd 18031 df-mhm 18075 df-submnd 18076 df-grp 18225 df-minusg 18226 df-sbg 18227 df-mulg 18346 df-subg 18397 df-ghm 18477 df-cntz 18568 df-cmn 19029 df-abl 19030 df-mgp 19362 df-ur 19374 df-ring 19421 df-subrg 19655 df-lmod 19758 df-lss 19826 df-sra 20066 df-rgmod 20067 df-dsmm 20551 df-frlm 20566 df-psr 20725 df-mpl 20727 df-opsr 20729 df-psr1 20958 df-ply1 20960 df-coe1 20961 df-mamu 21140 df-mat 21162 df-decpmat 21517 |
This theorem is referenced by: pm2mpf1lem 21548 pm2mpcl 21551 pm2mpcoe1 21554 pm2mpghmlem2 21566 pm2mpmhmlem2 21573 |
Copyright terms: Public domain | W3C validator |