Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubvr Structured version   Visualization version   GIF version

Theorem mrsubvr 35533
Description: The value of a substituted variable. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubvr.v 𝑉 = (mVR‘𝑇)
mrsubvr.r 𝑅 = (mREx‘𝑇)
mrsubvr.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubvr ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐴) → ((𝑆𝐹)‘⟨“𝑋”⟩) = (𝐹𝑋))

Proof of Theorem mrsubvr
StepHypRef Expression
1 ssun2 4154 . . . 4 𝑉 ⊆ ((mCN‘𝑇) ∪ 𝑉)
2 simp2 1137 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐴) → 𝐴𝑉)
3 simp3 1138 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐴) → 𝑋𝐴)
42, 3sseldd 3959 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐴) → 𝑋𝑉)
51, 4sselid 3956 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐴) → 𝑋 ∈ ((mCN‘𝑇) ∪ 𝑉))
6 eqid 2735 . . . 4 (mCN‘𝑇) = (mCN‘𝑇)
7 mrsubvr.v . . . 4 𝑉 = (mVR‘𝑇)
8 mrsubvr.r . . . 4 𝑅 = (mREx‘𝑇)
9 mrsubvr.s . . . 4 𝑆 = (mRSubst‘𝑇)
106, 7, 8, 9mrsubcv 35532 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ ((mCN‘𝑇) ∪ 𝑉)) → ((𝑆𝐹)‘⟨“𝑋”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
115, 10syld3an3 1411 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐴) → ((𝑆𝐹)‘⟨“𝑋”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
12 iftrue 4506 . . 3 (𝑋𝐴 → if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) = (𝐹𝑋))
13123ad2ant3 1135 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐴) → if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) = (𝐹𝑋))
1411, 13eqtrd 2770 1 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐴) → ((𝑆𝐹)‘⟨“𝑋”⟩) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  cun 3924  wss 3926  ifcif 4500  wf 6527  cfv 6531  ⟨“cs1 14613  mCNcmcn 35482  mVRcmvar 35483  mRExcmrex 35488  mRSubstcmrsub 35492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-word 14532  df-s1 14614  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-0g 17455  df-gsum 17456  df-frmd 18827  df-mrex 35508  df-mrsub 35512
This theorem is referenced by:  mrsubff1  35536
  Copyright terms: Public domain W3C validator