![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mumullem1 | Structured version Visualization version GIF version |
Description: Lemma for mumul 25370. A multiple of a non-squarefree number is non-squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.) |
Ref | Expression |
---|---|
mumullem1 | ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmz 15804 | . . . . . . 7 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
2 | 1 | adantl 475 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ) |
3 | zsqcl 13258 | . . . . . 6 ⊢ (𝑝 ∈ ℤ → (𝑝↑2) ∈ ℤ) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → (𝑝↑2) ∈ ℤ) |
5 | nnz 11756 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
6 | 5 | ad2antrr 716 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ) |
7 | nnz 11756 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
8 | 7 | ad2antlr 717 | . . . . 5 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ) |
9 | dvdsmultr1 15436 | . . . . 5 ⊢ (((𝑝↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝↑2) ∥ 𝐴 → (𝑝↑2) ∥ (𝐴 · 𝐵))) | |
10 | 4, 6, 8, 9 | syl3anc 1439 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → ((𝑝↑2) ∥ 𝐴 → (𝑝↑2) ∥ (𝐴 · 𝐵))) |
11 | 10 | reximdva 3198 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ (𝐴 · 𝐵))) |
12 | isnsqf 25324 | . . . 4 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) | |
13 | 12 | adantr 474 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
14 | nnmulcl 11404 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | |
15 | isnsqf 25324 | . . . 4 ⊢ ((𝐴 · 𝐵) ∈ ℕ → ((μ‘(𝐴 · 𝐵)) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ (𝐴 · 𝐵))) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((μ‘(𝐴 · 𝐵)) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ (𝐴 · 𝐵))) |
17 | 11, 13, 16 | 3imtr4d 286 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((μ‘𝐴) = 0 → (μ‘(𝐴 · 𝐵)) = 0)) |
18 | 17 | imp 397 | 1 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∃wrex 3091 class class class wbr 4888 ‘cfv 6137 (class class class)co 6924 0cc0 10274 · cmul 10279 ℕcn 11379 2c2 11435 ℤcz 11733 ↑cexp 13183 ∥ cdvds 15396 ℙcprime 15800 μcmu 25284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-card 9100 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-n0 11648 df-z 11734 df-uz 11998 df-fz 12649 df-seq 13125 df-exp 13184 df-hash 13442 df-dvds 15397 df-prm 15801 df-mu 25290 |
This theorem is referenced by: mumul 25370 |
Copyright terms: Public domain | W3C validator |