MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mumullem1 Structured version   Visualization version   GIF version

Theorem mumullem1 27089
Description: Lemma for mumul 27091. A multiple of a non-squarefree number is non-squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
mumullem1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = 0)

Proof of Theorem mumullem1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 prmz 16645 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
21adantl 481 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
3 zsqcl 14094 . . . . . 6 (𝑝 ∈ ℤ → (𝑝↑2) ∈ ℤ)
42, 3syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → (𝑝↑2) ∈ ℤ)
5 nnz 12550 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
65ad2antrr 726 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
7 nnz 12550 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
87ad2antlr 727 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
9 dvdsmultr1 16266 . . . . 5 (((𝑝↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝↑2) ∥ 𝐴 → (𝑝↑2) ∥ (𝐴 · 𝐵)))
104, 6, 8, 9syl3anc 1373 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑝 ∈ ℙ) → ((𝑝↑2) ∥ 𝐴 → (𝑝↑2) ∥ (𝐴 · 𝐵)))
1110reximdva 3146 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 → ∃𝑝 ∈ ℙ (𝑝↑2) ∥ (𝐴 · 𝐵)))
12 isnsqf 27045 . . . 4 (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
1312adantr 480 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
14 nnmulcl 12210 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
15 isnsqf 27045 . . . 4 ((𝐴 · 𝐵) ∈ ℕ → ((μ‘(𝐴 · 𝐵)) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ (𝐴 · 𝐵)))
1614, 15syl 17 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((μ‘(𝐴 · 𝐵)) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ (𝐴 · 𝐵)))
1711, 13, 163imtr4d 294 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((μ‘𝐴) = 0 → (μ‘(𝐴 · 𝐵)) = 0))
1817imp 406 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  0cc0 11068   · cmul 11073  cn 12186  2c2 12241  cz 12529  cexp 14026  cdvds 16222  cprime 16641  μcmu 27005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-exp 14027  df-hash 14296  df-dvds 16223  df-prm 16642  df-mu 27011
This theorem is referenced by:  mumul  27091
  Copyright terms: Public domain W3C validator