Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > n2dvds1 | Structured version Visualization version GIF version |
Description: 2 does not divide 1. That means 1 is odd. (Contributed by David A. Wheeler, 8-Dec-2018.) (Proof shortened by Steven Nguyen, 3-May-2023.) |
Ref | Expression |
---|---|
n2dvds1 | ⊢ ¬ 2 ∥ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfnz 12260 | . 2 ⊢ ¬ (1 / 2) ∈ ℤ | |
2 | 1z 12212 | . . 3 ⊢ 1 ∈ ℤ | |
3 | evend2 15923 | . . 3 ⊢ (1 ∈ ℤ → (2 ∥ 1 ↔ (1 / 2) ∈ ℤ)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 ∥ 1 ↔ (1 / 2) ∈ ℤ) |
5 | 1, 4 | mtbir 326 | 1 ⊢ ¬ 2 ∥ 1 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∈ wcel 2110 class class class wbr 5058 (class class class)co 7218 1c1 10735 / cdiv 11494 2c2 11890 ℤcz 12181 ∥ cdvds 15820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-iun 4911 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-om 7650 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-er 8396 df-en 8632 df-dom 8633 df-sdom 8634 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-div 11495 df-nn 11836 df-2 11898 df-n0 12096 df-z 12182 df-dvds 15821 |
This theorem is referenced by: bitsfzolem 15998 bitsinv1lem 16005 divgcdodd 16272 oddprm 16368 prmlem0 16664 prmlem1a 16665 perfectlem1 26115 lgsquad2lem2 26271 2lgsoddprmlem3 26300 eupth2lem3lem4 28319 poimirlem28 35547 jm2.22 40528 jm2.23 40529 lighneallem3 44740 lighneallem4 44743 dig2nn1st 45632 |
Copyright terms: Public domain | W3C validator |