![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n2dvds1 | Structured version Visualization version GIF version |
Description: 2 does not divide 1. That means 1 is odd. (Contributed by David A. Wheeler, 8-Dec-2018.) (Proof shortened by Steven Nguyen, 3-May-2023.) |
Ref | Expression |
---|---|
n2dvds1 | ⊢ ¬ 2 ∥ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfnz 12636 | . 2 ⊢ ¬ (1 / 2) ∈ ℤ | |
2 | 1z 12588 | . . 3 ⊢ 1 ∈ ℤ | |
3 | evend2 16296 | . . 3 ⊢ (1 ∈ ℤ → (2 ∥ 1 ↔ (1 / 2) ∈ ℤ)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 ∥ 1 ↔ (1 / 2) ∈ ℤ) |
5 | 1, 4 | mtbir 323 | 1 ⊢ ¬ 2 ∥ 1 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2098 class class class wbr 5138 (class class class)co 7401 1c1 11106 / cdiv 11867 2c2 12263 ℤcz 12554 ∥ cdvds 16193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-dvds 16194 |
This theorem is referenced by: bitsfzolem 16371 bitsinv1lem 16378 divgcdodd 16643 oddprm 16739 prmlem0 17035 prmlem1a 17036 perfectlem1 27066 lgsquad2lem2 27222 2lgsoddprmlem3 27251 eupth2lem3lem4 29908 poimirlem28 36972 jm2.22 42189 jm2.23 42190 lighneallem3 46726 lighneallem4 46729 dig2nn1st 47445 |
Copyright terms: Public domain | W3C validator |